Documentation

Mathlib.MeasureTheory.Measure.Stieltjes

Stieltjes measures on the real line #

Consider a function f : ℝ → ℝ which is monotone and right-continuous. Then one can define a corresponding measure, giving mass f b - f a to the interval (a, b].

Main definitions #

Basic properties of Stieltjes functions #

Bundled monotone right-continuous real functions, used to construct Stieltjes measures.

Instances For
    theorem StieltjesFunction.ext {f : StieltjesFunction} {g : StieltjesFunction} (h : ∀ (x : ), f x = g x) :
    f = g
    theorem StieltjesFunction.iInf_Ioi_eq (f : StieltjesFunction) (x : ) :
    ⨅ (r : ↑(Set.Ioi x)), f r = f x
    theorem StieltjesFunction.iInf_rat_gt_eq (f : StieltjesFunction) (x : ) :
    ⨅ (r : { r' // x < r' }), f r = f x

    The identity of as a Stieltjes function, used to construct Lebesgue measure.

    Equations
    Instances For
      noncomputable def Monotone.stieltjesFunction {f : } (hf : Monotone f) :

      If a function f : ℝ → ℝ is monotone, then the function mapping x to the right limit of f at x is a Stieltjes function, i.e., it is monotone and right-continuous.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The outer measure associated to a Stieltjes function #

        Length of an interval. This is the largest monotone function which correctly measures all intervals.

        Equations
        Instances For
          theorem StieltjesFunction.length_subadditive_Icc_Ioo (f : StieltjesFunction) {a : } {b : } {c : } {d : } (ss : Set.Icc a b ⋃ (i : ), Set.Ioo (c i) (d i)) :
          ENNReal.ofReal (f b - f a) ∑' (i : ), ENNReal.ofReal (f (d i) - f (c i))

          If a compact interval [a, b] is covered by a union of open interval (c i, d i), then f b - f a ≤ ∑ f (d i) - f (c i). This is an auxiliary technical statement to prove the same statement for half-open intervals, the point of the current statement being that one can use compactness to reduce it to a finite sum, and argue by induction on the size of the covering set.

          @[simp]
          theorem StieltjesFunction.outer_Ioc (f : StieltjesFunction) (a : ) (b : ) :
          ↑(StieltjesFunction.outer f) (Set.Ioc a b) = ENNReal.ofReal (f b - f a)

          The measure associated to a Stieltjes function #

          @[irreducible]

          The measure associated to a Stieltjes function, giving mass f b - f a to the interval (a, b].

          Equations
          Instances For
            theorem StieltjesFunction.measure_def (f : StieltjesFunction) :
            StieltjesFunction.measure f = { toOuterMeasure := StieltjesFunction.outer f, m_iUnion := (_ : ∀ (_s : Set ), (∀ (i : ), MeasurableSet (_s i)) → Pairwise (Disjoint on _s)↑(StieltjesFunction.outer f) (⋃ (i : ), _s i) = ∑' (i : ), ↑(StieltjesFunction.outer f) (_s i)), trimmed := (_ : MeasureTheory.OuterMeasure.trim (StieltjesFunction.outer f) = StieltjesFunction.outer f) }
            @[simp]
            theorem StieltjesFunction.measure_Ioc (f : StieltjesFunction) (a : ) (b : ) :
            ↑(StieltjesFunction.measure f) (Set.Ioc a b) = ENNReal.ofReal (f b - f a)
            theorem StieltjesFunction.measure_Iic (f : StieltjesFunction) {l : } (hf : Filter.Tendsto (f) Filter.atBot (nhds l)) (x : ) :
            theorem StieltjesFunction.measure_Ici (f : StieltjesFunction) {l : } (hf : Filter.Tendsto (f) Filter.atTop (nhds l)) (x : ) :
            theorem StieltjesFunction.measure_univ (f : StieltjesFunction) {l : } {u : } (hfl : Filter.Tendsto (f) Filter.atBot (nhds l)) (hfu : Filter.Tendsto (f) Filter.atTop (nhds u)) :
            ↑(StieltjesFunction.measure f) Set.univ = ENNReal.ofReal (u - l)