Density of simple functions #
Show that each Borel measurable function can be approximated pointwise by a sequence of simple functions.
Main definitions #
MeasureTheory.SimpleFunc.nearestPt (e : ℕ → α) (N : ℕ) : α →ₛ ℕ
: theSimpleFunc
sending eachx : α
to the pointe k
which is the nearest tox
amonge 0
, ...,e N
.MeasureTheory.SimpleFunc.approxOn (f : β → α) (hf : Measurable f) (s : Set α) (y₀ : α) (h₀ : y₀ ∈ s) [SeparableSpace s] (n : ℕ) : β →ₛ α
: a simple function that takes values ins
and approximatesf
.
Main results #
tendsto_approxOn
(pointwise convergence): Iff x ∈ s
, then the sequence of simple approximationsMeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n
, evaluated atx
, tends tof x
asn
tends to∞
.
Notations #
α →ₛ β
(local notation): the type of simple functionsα → β
.
Pointwise approximation by simple functions #
noncomputable def
MeasureTheory.SimpleFunc.nearestPtInd
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
(e : ℕ → α)
:
nearestPtInd e N x
is the index k
such that e k
is the nearest point to x
among the
points e 0
, ..., e N
. If more than one point are at the same distance from x
, then
nearestPtInd e N x
returns the least of their indexes.
Equations
- One or more equations did not get rendered due to their size.
- MeasureTheory.SimpleFunc.nearestPtInd e 0 = MeasureTheory.SimpleFunc.const α 0
Instances For
noncomputable def
MeasureTheory.SimpleFunc.nearestPt
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
(e : ℕ → α)
(N : ℕ)
:
nearestPt e N x
is the nearest point to x
among the points e 0
, ..., e N
. If more than
one point are at the same distance from x
, then nearestPt e N x
returns the point with the
least possible index.
Equations
Instances For
@[simp]
theorem
MeasureTheory.SimpleFunc.nearestPtInd_zero
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
(e : ℕ → α)
:
@[simp]
theorem
MeasureTheory.SimpleFunc.nearestPt_zero
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
(e : ℕ → α)
:
theorem
MeasureTheory.SimpleFunc.nearestPtInd_succ
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
(e : ℕ → α)
(N : ℕ)
(x : α)
:
theorem
MeasureTheory.SimpleFunc.nearestPtInd_le
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
(e : ℕ → α)
(N : ℕ)
(x : α)
:
↑(MeasureTheory.SimpleFunc.nearestPtInd e N) x ≤ N
theorem
MeasureTheory.SimpleFunc.edist_nearestPt_le
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
(e : ℕ → α)
(x : α)
{k : ℕ}
{N : ℕ}
(hk : k ≤ N)
:
edist (↑(MeasureTheory.SimpleFunc.nearestPt e N) x) x ≤ edist (e k) x
theorem
MeasureTheory.SimpleFunc.tendsto_nearestPt
{α : Type u_1}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
{e : ℕ → α}
{x : α}
(hx : x ∈ closure (Set.range e))
:
Filter.Tendsto (fun N => ↑(MeasureTheory.SimpleFunc.nearestPt e N) x) Filter.atTop (nhds x)
noncomputable def
MeasureTheory.SimpleFunc.approxOn
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
(f : β → α)
(hf : Measurable f)
(s : Set α)
(y₀ : α)
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
(n : ℕ)
:
Approximate a measurable function by a sequence of simple functions F n
such that
F n x ∈ s
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MeasureTheory.SimpleFunc.approxOn_zero
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
{f : β → α}
(hf : Measurable f)
{s : Set α}
{y₀ : α}
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
(x : β)
:
↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ 0) x = y₀
theorem
MeasureTheory.SimpleFunc.approxOn_mem
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
{f : β → α}
(hf : Measurable f)
{s : Set α}
{y₀ : α}
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
(n : ℕ)
(x : β)
:
↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x ∈ s
@[simp]
theorem
MeasureTheory.SimpleFunc.approxOn_comp
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
{γ : Type u_7}
[MeasurableSpace γ]
{f : β → α}
(hf : Measurable f)
{g : γ → β}
(hg : Measurable g)
{s : Set α}
{y₀ : α}
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
(n : ℕ)
:
MeasureTheory.SimpleFunc.approxOn (f ∘ g) (_ : Measurable (f ∘ g)) s y₀ h₀ n = MeasureTheory.SimpleFunc.comp (MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) g hg
theorem
MeasureTheory.SimpleFunc.tendsto_approxOn
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
{f : β → α}
(hf : Measurable f)
{s : Set α}
{y₀ : α}
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
{x : β}
(hx : f x ∈ closure s)
:
Filter.Tendsto (fun n => ↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x) Filter.atTop (nhds (f x))
theorem
MeasureTheory.SimpleFunc.edist_approxOn_mono
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
{f : β → α}
(hf : Measurable f)
{s : Set α}
{y₀ : α}
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
(x : β)
{m : ℕ}
{n : ℕ}
(h : m ≤ n)
:
edist (↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x) (f x) ≤ edist (↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ m) x) (f x)
theorem
MeasureTheory.SimpleFunc.edist_approxOn_le
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
{f : β → α}
(hf : Measurable f)
{s : Set α}
{y₀ : α}
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
(x : β)
(n : ℕ)
:
edist (↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x) (f x) ≤ edist y₀ (f x)
theorem
MeasureTheory.SimpleFunc.edist_approxOn_y0_le
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[PseudoEMetricSpace α]
[OpensMeasurableSpace α]
[MeasurableSpace β]
{f : β → α}
(hf : Measurable f)
{s : Set α}
{y₀ : α}
(h₀ : y₀ ∈ s)
[TopologicalSpace.SeparableSpace ↑s]
(x : β)
(n : ℕ)
: