Documentation

Mathlib.MeasureTheory.Function.SimpleFuncDense

Density of simple functions #

Show that each Borel measurable function can be approximated pointwise by a sequence of simple functions.

Main definitions #

Main results #

Notations #

Pointwise approximation by simple functions #

nearestPtInd e N x is the index k such that e k is the nearest point to x among the points e 0, ..., e N. If more than one point are at the same distance from x, then nearestPtInd e N x returns the least of their indexes.

Equations
Instances For

    nearestPt e N x is the nearest point to x among the points e 0, ..., e N. If more than one point are at the same distance from x, then nearestPt e N x returns the point with the least possible index.

    Equations
    Instances For
      theorem MeasureTheory.SimpleFunc.nearestPtInd_succ {α : Type u_1} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] (e : α) (N : ) (x : α) :
      ↑(MeasureTheory.SimpleFunc.nearestPtInd e (N + 1)) x = if ∀ (k : ), k Nedist (e (N + 1)) x < edist (e k) x then N + 1 else ↑(MeasureTheory.SimpleFunc.nearestPtInd e N) x
      theorem MeasureTheory.SimpleFunc.edist_nearestPt_le {α : Type u_1} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] (e : α) (x : α) {k : } {N : } (hk : k N) :
      theorem MeasureTheory.SimpleFunc.tendsto_nearestPt {α : Type u_1} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] {e : α} {x : α} (hx : x closure (Set.range e)) :
      Filter.Tendsto (fun N => ↑(MeasureTheory.SimpleFunc.nearestPt e N) x) Filter.atTop (nhds x)
      noncomputable def MeasureTheory.SimpleFunc.approxOn {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] (f : βα) (hf : Measurable f) (s : Set α) (y₀ : α) (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] (n : ) :

      Approximate a measurable function by a sequence of simple functions F n such that F n x ∈ s.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem MeasureTheory.SimpleFunc.approxOn_zero {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] {f : βα} (hf : Measurable f) {s : Set α} {y₀ : α} (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] (x : β) :
        ↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ 0) x = y₀
        theorem MeasureTheory.SimpleFunc.approxOn_mem {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] {f : βα} (hf : Measurable f) {s : Set α} {y₀ : α} (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] (n : ) (x : β) :
        ↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x s
        @[simp]
        theorem MeasureTheory.SimpleFunc.approxOn_comp {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] {γ : Type u_7} [MeasurableSpace γ] {f : βα} (hf : Measurable f) {g : γβ} (hg : Measurable g) {s : Set α} {y₀ : α} (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] (n : ) :
        theorem MeasureTheory.SimpleFunc.tendsto_approxOn {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] {f : βα} (hf : Measurable f) {s : Set α} {y₀ : α} (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] {x : β} (hx : f x closure s) :
        Filter.Tendsto (fun n => ↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x) Filter.atTop (nhds (f x))
        theorem MeasureTheory.SimpleFunc.edist_approxOn_mono {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] {f : βα} (hf : Measurable f) {s : Set α} {y₀ : α} (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] (x : β) {m : } {n : } (h : m n) :
        edist (↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x) (f x) edist (↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ m) x) (f x)
        theorem MeasureTheory.SimpleFunc.edist_approxOn_le {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] {f : βα} (hf : Measurable f) {s : Set α} {y₀ : α} (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] (x : β) (n : ) :
        edist (↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x) (f x) edist y₀ (f x)
        theorem MeasureTheory.SimpleFunc.edist_approxOn_y0_le {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [PseudoEMetricSpace α] [OpensMeasurableSpace α] [MeasurableSpace β] {f : βα} (hf : Measurable f) {s : Set α} {y₀ : α} (h₀ : y₀ s) [TopologicalSpace.SeparableSpace s] (x : β) (n : ) :
        edist y₀ (↑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) x) edist y₀ (f x) + edist y₀ (f x)