Order related properties of Lp spaces #
Results #
Lp E p μ
is anOrderedAddCommGroup
whenE
is aNormedLatticeAddCommGroup
.
TODO #
- move definitions of
Lp.posPart
andLp.negPart
to this file, and define them asPosPart.pos
andNegPart.neg
given by the lattice structure.
theorem
MeasureTheory.Lp.coeFn_le
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
(f : { x // x ∈ MeasureTheory.Lp E p })
(g : { x // x ∈ MeasureTheory.Lp E p })
:
↑↑f ≤ᶠ[MeasureTheory.Measure.ae μ] ↑↑g ↔ f ≤ g
theorem
MeasureTheory.Lp.coeFn_nonneg
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
(f : { x // x ∈ MeasureTheory.Lp E p })
:
0 ≤ᶠ[MeasureTheory.Measure.ae μ] ↑↑f ↔ 0 ≤ f
instance
MeasureTheory.Lp.instCovariantClassLE
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
:
CovariantClass { x // x ∈ MeasureTheory.Lp E p } { x // x ∈ MeasureTheory.Lp E p } (fun x x_1 => x + x_1) fun x x_1 =>
x ≤ x_1
instance
MeasureTheory.Lp.instOrderedAddCommGroup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
:
OrderedAddCommGroup { x // x ∈ MeasureTheory.Lp E p }
Equations
- One or more equations did not get rendered due to their size.
theorem
MeasureTheory.Memℒp.sup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Memℒp f p)
(hg : MeasureTheory.Memℒp g p)
:
MeasureTheory.Memℒp (f ⊔ g) p
theorem
MeasureTheory.Memℒp.inf
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
{f : α → E}
{g : α → E}
(hf : MeasureTheory.Memℒp f p)
(hg : MeasureTheory.Memℒp g p)
:
MeasureTheory.Memℒp (f ⊓ g) p
theorem
MeasureTheory.Memℒp.abs
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
{f : α → E}
(hf : MeasureTheory.Memℒp f p)
:
MeasureTheory.Memℒp |f| p
instance
MeasureTheory.Lp.instLattice
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
:
Lattice { x // x ∈ MeasureTheory.Lp E p }
Equations
- One or more equations did not get rendered due to their size.
theorem
MeasureTheory.Lp.coeFn_sup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
(f : { x // x ∈ MeasureTheory.Lp E p })
(g : { x // x ∈ MeasureTheory.Lp E p })
:
↑↑(f ⊔ g) =ᶠ[MeasureTheory.Measure.ae μ] ↑↑f ⊔ ↑↑g
theorem
MeasureTheory.Lp.coeFn_inf
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
(f : { x // x ∈ MeasureTheory.Lp E p })
(g : { x // x ∈ MeasureTheory.Lp E p })
:
↑↑(f ⊓ g) =ᶠ[MeasureTheory.Measure.ae μ] ↑↑f ⊓ ↑↑g
theorem
MeasureTheory.Lp.coeFn_abs
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
(f : { x // x ∈ MeasureTheory.Lp E p })
:
↑↑|f| =ᶠ[MeasureTheory.Measure.ae μ] fun x => |↑↑f x|
noncomputable instance
MeasureTheory.Lp.instNormedLatticeAddCommGroup
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{p : ENNReal}
[NormedLatticeAddCommGroup E]
[Fact (1 ≤ p)]
:
NormedLatticeAddCommGroup { x // x ∈ MeasureTheory.Lp E p }
Equations
- One or more equations did not get rendered due to their size.