Submodule quotients and direct sums #
This file contains some results on the quotient of a module by a direct sum of submodules, and the direct sum of quotients of modules by submodules.
Main definitions #
Submodule.piQuotientLift
: create a map out of the direct sum of quotientsSubmodule.quotientPiLift
: create a map out of the quotient of a direct sumSubmodule.quotientPi
: the quotient of a direct sum is the direct sum of quotients.
def
Submodule.piQuotientLift
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{N : Type u_4}
[AddCommGroup N]
[Module R N]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
(q : Submodule R N)
(f : (i : ι) → Ms i →ₗ[R] N)
(hf : ∀ (i : ι), p i ≤ Submodule.comap (f i) q)
:
Lift a family of maps to the direct sum of quotients.
Equations
- Submodule.piQuotientLift p q f hf = ↑(LinearMap.lsum R (fun i => Ms i ⧸ p i) R) fun i => Submodule.mapQ (p i) q (f i) (hf i)
Instances For
@[simp]
theorem
Submodule.piQuotientLift_mk
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{N : Type u_4}
[AddCommGroup N]
[Module R N]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
(q : Submodule R N)
(f : (i : ι) → Ms i →ₗ[R] N)
(hf : ∀ (i : ι), p i ≤ Submodule.comap (f i) q)
(x : (i : ι) → Ms i)
:
(↑(Submodule.piQuotientLift p q f hf) fun i => Submodule.Quotient.mk (x i)) = Submodule.Quotient.mk (↑(↑(LinearMap.lsum R (fun i => Ms i) R) f) x)
@[simp]
theorem
Submodule.piQuotientLift_single
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{N : Type u_4}
[AddCommGroup N]
[Module R N]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
(q : Submodule R N)
(f : (i : ι) → Ms i →ₗ[R] N)
(hf : ∀ (i : ι), p i ≤ Submodule.comap (f i) q)
(i : ι)
(x : Ms i ⧸ p i)
:
↑(Submodule.piQuotientLift p q f hf) (Pi.single i x) = ↑(Submodule.mapQ (p i) q (f i) (hf i)) x
def
Submodule.quotientPiLift
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{Ns : ι → Type u_5}
[(i : ι) → AddCommGroup (Ns i)]
[(i : ι) → Module R (Ns i)]
(p : (i : ι) → Submodule R (Ms i))
(f : (i : ι) → Ms i →ₗ[R] Ns i)
(hf : ∀ (i : ι), p i ≤ LinearMap.ker (f i))
:
((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p →ₗ[R] (i : ι) → Ns i
Lift a family of maps to a quotient of direct sums.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Submodule.quotientPiLift_mk
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
{Ns : ι → Type u_5}
[(i : ι) → AddCommGroup (Ns i)]
[(i : ι) → Module R (Ns i)]
(p : (i : ι) → Submodule R (Ms i))
(f : (i : ι) → Ms i →ₗ[R] Ns i)
(hf : ∀ (i : ι), p i ≤ LinearMap.ker (f i))
(x : (i : ι) → Ms i)
:
↑(Submodule.quotientPiLift p f hf) (Submodule.Quotient.mk x) = fun i => ↑(f i) (x i)
def
Submodule.quotientPi_aux.toFun
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
:
((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p → (i : ι) → Ms i ⧸ p i
Equations
- Submodule.quotientPi_aux.toFun p = ↑(Submodule.quotientPiLift p (fun i => Submodule.mkQ (p i)) (_ : ∀ (i : ι), p i ≤ LinearMap.ker (Submodule.mkQ (p i))))
Instances For
def
Submodule.quotientPi_aux.invFun
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
((i : ι) → Ms i ⧸ p i) → ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Submodule.quotientPi_aux.left_inv
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
theorem
Submodule.quotientPi_aux.right_inv
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
theorem
Submodule.quotientPi_aux.map_add
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
(x : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p)
(y : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p)
:
theorem
Submodule.quotientPi_aux.map_smul
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
(p : (i : ι) → Submodule R (Ms i))
(r : R)
(x : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p)
:
Submodule.quotientPi_aux.toFun p (r • x) = ↑(RingHom.id R) r • Submodule.quotientPi_aux.toFun p x
@[simp]
theorem
Submodule.quotientPi_symm_apply
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
∀ (a : (i : ι) → Ms i ⧸ p i),
↑(LinearEquiv.symm (Submodule.quotientPi p)) a = ↑(Submodule.piQuotientLift p (Submodule.pi Set.univ p) LinearMap.single
(_ : ∀ (x : ι), p x ≤ Submodule.comap (LinearMap.single x) (Submodule.pi Set.univ p)))
a
@[simp]
theorem
Submodule.quotientPi_apply
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
∀ (a : ((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p) (i : ι),
↑(Submodule.quotientPi p) a i = ↑(Submodule.quotientPiLift p (fun i => Submodule.mkQ (p i))
(_ : ∀ (i : ι), p i ≤ LinearMap.ker (Submodule.mkQ (p i))))
a i
def
Submodule.quotientPi
{ι : Type u_1}
{R : Type u_2}
[CommRing R]
{Ms : ι → Type u_3}
[(i : ι) → AddCommGroup (Ms i)]
[(i : ι) → Module R (Ms i)]
[Fintype ι]
[DecidableEq ι]
(p : (i : ι) → Submodule R (Ms i))
:
(((i : ι) → Ms i) ⧸ Submodule.pi Set.univ p) ≃ₗ[R] (i : ι) → Ms i ⧸ p i
The quotient of a direct sum is the direct sum of quotients.
Equations
- One or more equations did not get rendered due to their size.