Documentation

Mathlib.GroupTheory.Submonoid.MulOpposite

Submonoid of opposite monoids #

For every monoid M, we construct an equivalence between submonoids of M and that of Mᵐᵒᵖ.

theorem AddSubmonoid.op.proof_1 {M : Type u_1} [AddZeroClass M] (x : AddSubmonoid M) :
∀ {a b : Mᵃᵒᵖ}, a AddOpposite.unop ⁻¹' x.toAddSubsemigroupb AddOpposite.unop ⁻¹' x.toAddSubsemigroupAddOpposite.unop b + AddOpposite.unop a x

Pull an additive submonoid back to an opposite submonoid along AddOpposite.unop

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem AddSubmonoid.op_coe {M : Type u_2} [AddZeroClass M] (x : AddSubmonoid M) :
    ↑(AddSubmonoid.op x) = AddOpposite.unop ⁻¹' x.toAddSubsemigroup
    @[simp]
    theorem Submonoid.op_coe {M : Type u_2} [MulOneClass M] (x : Submonoid M) :
    ↑(Submonoid.op x) = MulOpposite.unop ⁻¹' x.toSubsemigroup

    Pull a submonoid back to an opposite submonoid along MulOpposite.unop

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem AddSubmonoid.unop.proof_1 {M : Type u_1} [AddZeroClass M] (x : AddSubmonoid Mᵃᵒᵖ) :
      ∀ {a b : M}, a AddOpposite.op ⁻¹' x.toAddSubsemigroupb AddOpposite.op ⁻¹' x.toAddSubsemigroup{ unop' := b } + { unop' := a } x

      Pull an opposite additive submonoid back to a submonoid along AddOpposite.op

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem AddSubmonoid.unop_coe {M : Type u_2} [AddZeroClass M] (x : AddSubmonoid Mᵃᵒᵖ) :
        ↑(AddSubmonoid.unop x) = AddOpposite.op ⁻¹' x.toAddSubsemigroup
        @[simp]
        theorem Submonoid.unop_coe {M : Type u_2} [MulOneClass M] (x : Submonoid Mᵐᵒᵖ) :
        ↑(Submonoid.unop x) = MulOpposite.op ⁻¹' x.toSubsemigroup

        Pull an opposite submonoid back to a submonoid along MulOpposite.op

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          A additive submonoid H of G determines an additive submonoid H.op of the opposite group Gᵐᵒᵖ.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem AddSubmonoid.opEquiv_symm_apply {M : Type u_1} [AddZeroClass M] (x : AddSubmonoid Mᵃᵒᵖ) :
            AddSubmonoid.opEquiv.symm x = AddSubmonoid.unop x
            @[simp]
            theorem AddSubmonoid.opEquiv_apply {M : Type u_1} [AddZeroClass M] (x : AddSubmonoid M) :
            AddSubmonoid.opEquiv x = AddSubmonoid.op x
            @[simp]
            theorem Submonoid.opEquiv_symm_apply {M : Type u_1} [MulOneClass M] (x : Submonoid Mᵐᵒᵖ) :
            Submonoid.opEquiv.symm x = Submonoid.unop x
            @[simp]
            theorem Submonoid.opEquiv_apply {M : Type u_1} [MulOneClass M] (x : Submonoid M) :
            Submonoid.opEquiv x = Submonoid.op x

            A submonoid H of G determines a submonoid H.op of the opposite group Gᵐᵒᵖ.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem AddSubmonoid.equivOp.proof_1 {M : Type u_1} [AddZeroClass M] (H : AddSubmonoid M) :
              ∀ (x : M), x H x H
              def AddSubmonoid.equivOp {M : Type u_1} [AddZeroClass M] (H : AddSubmonoid M) :
              { x // x H } { x // x AddSubmonoid.op H }

              Bijection between an additive submonoid H and its opposite.

              Equations
              Instances For
                @[simp]
                theorem AddSubmonoid.equivOp_symm_apply_coe {M : Type u_1} [AddZeroClass M] (H : AddSubmonoid M) (b : { b // (fun x => x AddSubmonoid.op H) b }) :
                ↑((AddSubmonoid.equivOp H).symm b) = AddOpposite.unop b
                @[simp]
                theorem Submonoid.equivOp_symm_apply_coe {M : Type u_1} [MulOneClass M] (H : Submonoid M) (b : { b // (fun x => x Submonoid.op H) b }) :
                ↑((Submonoid.equivOp H).symm b) = MulOpposite.unop b
                @[simp]
                theorem Submonoid.equivOp_apply_coe {M : Type u_1} [MulOneClass M] (H : Submonoid M) (a : { a // (fun x => x H) a }) :
                @[simp]
                theorem AddSubmonoid.equivOp_apply_coe {M : Type u_1} [AddZeroClass M] (H : AddSubmonoid M) (a : { a // (fun x => x H) a }) :
                def Submonoid.equivOp {M : Type u_1} [MulOneClass M] (H : Submonoid M) :
                { x // x H } { x // x Submonoid.op H }

                Bijection between a submonoid H and its opposite.

                Equations
                Instances For