Documentation

Mathlib.GroupTheory.Coset

Cosets #

This file develops the basic theory of left and right cosets.

Main definitions #

Notation #

def leftAddCoset {α : Type u_1} [Add α] (a : α) (s : Set α) :
Set α

The left coset a+s for an element a : α and a subset s : set α

Equations
Instances For
    def leftCoset {α : Type u_1} [Mul α] (a : α) (s : Set α) :
    Set α

    The left coset a * s for an element a : α and a subset s : Set α

    Equations
    Instances For
      def rightAddCoset {α : Type u_1} [Add α] (s : Set α) (a : α) :
      Set α

      The right coset s+a for an element a : α and a subset s : set α

      Equations
      Instances For
        def rightCoset {α : Type u_1} [Mul α] (s : Set α) (a : α) :
        Set α

        The right coset s * a for an element a : α and a subset s : Set α

        Equations
        Instances For

          The left coset a * s for an element a : α and a subset s : Set α

          Equations
          Instances For

            The left coset a+s for an element a : α and a subset s : set α

            Equations
            Instances For

              The right coset s * a for an element a : α and a subset s : Set α

              Equations
              Instances For

                The right coset s+a for an element a : α and a subset s : set α

                Equations
                Instances For
                  theorem mem_leftAddCoset {α : Type u_1} [Add α] {s : Set α} {x : α} (a : α) (hxS : x s) :
                  theorem mem_leftCoset {α : Type u_1} [Mul α] {s : Set α} {x : α} (a : α) (hxS : x s) :
                  a * x leftCoset a s
                  theorem mem_rightAddCoset {α : Type u_1} [Add α] {s : Set α} {x : α} (a : α) (hxS : x s) :
                  theorem mem_rightCoset {α : Type u_1} [Mul α] {s : Set α} {x : α} (a : α) (hxS : x s) :
                  x * a rightCoset s a
                  def LeftAddCosetEquivalence {α : Type u_1} [Add α] (s : Set α) (a : α) (b : α) :

                  Equality of two left cosets a + s and b + s.

                  Equations
                  Instances For
                    def LeftCosetEquivalence {α : Type u_1} [Mul α] (s : Set α) (a : α) (b : α) :

                    Equality of two left cosets a * s and b * s.

                    Equations
                    Instances For
                      def RightAddCosetEquivalence {α : Type u_1} [Add α] (s : Set α) (a : α) (b : α) :

                      Equality of two right cosets s + a and s + b.

                      Equations
                      Instances For
                        def RightCosetEquivalence {α : Type u_1} [Mul α] (s : Set α) (a : α) (b : α) :

                        Equality of two right cosets s * a and s * b.

                        Equations
                        Instances For
                          @[simp]
                          theorem leftAddCoset_assoc {α : Type u_1} [AddSemigroup α] (s : Set α) (a : α) (b : α) :
                          @[simp]
                          theorem leftCoset_assoc {α : Type u_1} [Semigroup α] (s : Set α) (a : α) (b : α) :
                          leftCoset a (leftCoset b s) = leftCoset (a * b) s
                          @[simp]
                          theorem rightAddCoset_assoc {α : Type u_1} [AddSemigroup α] (s : Set α) (a : α) (b : α) :
                          @[simp]
                          theorem rightCoset_assoc {α : Type u_1} [Semigroup α] (s : Set α) (a : α) (b : α) :
                          theorem leftAddCoset_rightAddCoset {α : Type u_1} [AddSemigroup α] (s : Set α) (a : α) (b : α) :
                          theorem leftCoset_rightCoset {α : Type u_1} [Semigroup α] (s : Set α) (a : α) (b : α) :
                          @[simp]
                          theorem zero_leftAddCoset {α : Type u_1} [AddMonoid α] (s : Set α) :
                          @[simp]
                          theorem one_leftCoset {α : Type u_1} [Monoid α] (s : Set α) :
                          leftCoset 1 s = s
                          @[simp]
                          theorem rightAddCoset_zero {α : Type u_1} [AddMonoid α] (s : Set α) :
                          @[simp]
                          theorem rightCoset_one {α : Type u_1} [Monoid α] (s : Set α) :
                          theorem mem_own_leftAddCoset {α : Type u_1} [AddMonoid α] (s : AddSubmonoid α) (a : α) :
                          a leftAddCoset a s
                          theorem mem_own_leftCoset {α : Type u_1} [Monoid α] (s : Submonoid α) (a : α) :
                          a leftCoset a s
                          theorem mem_own_rightAddCoset {α : Type u_1} [AddMonoid α] (s : AddSubmonoid α) (a : α) :
                          a rightAddCoset (s) a
                          theorem mem_own_rightCoset {α : Type u_1} [Monoid α] (s : Submonoid α) (a : α) :
                          a rightCoset (s) a
                          theorem mem_leftAddCoset_leftAddCoset {α : Type u_1} [AddMonoid α] (s : AddSubmonoid α) {a : α} (ha : leftAddCoset a s = s) :
                          a s
                          theorem mem_leftCoset_leftCoset {α : Type u_1} [Monoid α] (s : Submonoid α) {a : α} (ha : leftCoset a s = s) :
                          a s
                          theorem mem_rightAddCoset_rightAddCoset {α : Type u_1} [AddMonoid α] (s : AddSubmonoid α) {a : α} (ha : rightAddCoset (s) a = s) :
                          a s
                          theorem mem_rightCoset_rightCoset {α : Type u_1} [Monoid α] (s : Submonoid α) {a : α} (ha : rightCoset (s) a = s) :
                          a s
                          theorem mem_leftAddCoset_iff {α : Type u_1} [AddGroup α] {s : Set α} {x : α} (a : α) :
                          x leftAddCoset a s -a + x s
                          abbrev mem_leftAddCoset_iff.match_1 {α : Type u_1} [AddGroup α] {s : Set α} {x : α} (a : α) (motive : x leftAddCoset a sProp) :
                          (x : x leftAddCoset a s) → ((b : α) → (hb : b s) → (Eq : (fun x => a + x) b = x) → motive (_ : a, a s (fun x => a + x) a = x)) → motive x
                          Equations
                          Instances For
                            theorem mem_leftCoset_iff {α : Type u_1} [Group α] {s : Set α} {x : α} (a : α) :
                            x leftCoset a s a⁻¹ * x s
                            theorem mem_rightAddCoset_iff {α : Type u_1} [AddGroup α] {s : Set α} {x : α} (a : α) :
                            x rightAddCoset s a x + -a s
                            abbrev mem_rightAddCoset_iff.match_1 {α : Type u_1} [AddGroup α] {s : Set α} {x : α} (a : α) (motive : x rightAddCoset s aProp) :
                            (x : x rightAddCoset s a) → ((b : α) → (hb : b s) → (Eq : (fun x => x + a) b = x) → motive (_ : a, a s (fun x => x + a) a = x)) → motive x
                            Equations
                            Instances For
                              theorem mem_rightCoset_iff {α : Type u_1} [Group α] {s : Set α} {x : α} (a : α) :
                              theorem leftAddCoset_mem_leftAddCoset {α : Type u_1} [AddGroup α] (s : AddSubgroup α) {a : α} (ha : a s) :
                              leftAddCoset a s = s
                              theorem leftCoset_mem_leftCoset {α : Type u_1} [Group α] (s : Subgroup α) {a : α} (ha : a s) :
                              leftCoset a s = s
                              theorem rightAddCoset_mem_rightAddCoset {α : Type u_1} [AddGroup α] (s : AddSubgroup α) {a : α} (ha : a s) :
                              rightAddCoset (s) a = s
                              theorem rightCoset_mem_rightCoset {α : Type u_1} [Group α] (s : Subgroup α) {a : α} (ha : a s) :
                              rightCoset (s) a = s
                              abbrev orbit_addSubgroup_eq_rightCoset.match_1 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (a : α) (_b : α) (motive : _b AddAction.orbit { x // x s } aProp) :
                              (x : _b AddAction.orbit { x // x s } a) → ((c : { x // x s }) → (d : (fun m => m +ᵥ a) c = _b) → motive (_ : y, (fun m => m +ᵥ a) y = _b)) → motive x
                              Equations
                              Instances For
                                abbrev orbit_addSubgroup_eq_rightCoset.match_2 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (a : α) (_b : α) (motive : _b rightAddCoset (s) aProp) :
                                (x : _b rightAddCoset (s) a) → ((c : α) → (d : c s) → (e : (fun x => x + a) c = _b) → motive (_ : a, a s (fun x => x + a) a = _b)) → motive x
                                Equations
                                Instances For
                                  theorem orbit_addSubgroup_eq_rightCoset {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (a : α) :
                                  AddAction.orbit { x // x s } a = rightAddCoset (s) a
                                  theorem orbit_subgroup_eq_rightCoset {α : Type u_1} [Group α] (s : Subgroup α) (a : α) :
                                  MulAction.orbit { x // x s } a = rightCoset (s) a
                                  theorem orbit_addSubgroup_eq_self_of_mem {α : Type u_1} [AddGroup α] (s : AddSubgroup α) {a : α} (ha : a s) :
                                  AddAction.orbit { x // x s } a = s
                                  theorem orbit_subgroup_eq_self_of_mem {α : Type u_1} [Group α] (s : Subgroup α) {a : α} (ha : a s) :
                                  MulAction.orbit { x // x s } a = s
                                  theorem orbit_addSubgroup_zero_eq_self {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :
                                  AddAction.orbit { x // x s } 0 = s
                                  theorem orbit_subgroup_one_eq_self {α : Type u_1} [Group α] (s : Subgroup α) :
                                  MulAction.orbit { x // x s } 1 = s
                                  theorem eq_addCosets_of_normal {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (N : AddSubgroup.Normal s) (g : α) :
                                  leftAddCoset g s = rightAddCoset (s) g
                                  theorem eq_cosets_of_normal {α : Type u_1} [Group α] (s : Subgroup α) (N : Subgroup.Normal s) (g : α) :
                                  leftCoset g s = rightCoset (s) g
                                  theorem normal_of_eq_addCosets {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (h : ∀ (g : α), leftAddCoset g s = rightAddCoset (s) g) :
                                  theorem normal_of_eq_cosets {α : Type u_1} [Group α] (s : Subgroup α) (h : ∀ (g : α), leftCoset g s = rightCoset (s) g) :
                                  theorem normal_iff_eq_addCosets {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :
                                  AddSubgroup.Normal s ∀ (g : α), leftAddCoset g s = rightAddCoset (s) g
                                  theorem normal_iff_eq_cosets {α : Type u_1} [Group α] (s : Subgroup α) :
                                  Subgroup.Normal s ∀ (g : α), leftCoset g s = rightCoset (s) g
                                  theorem leftAddCoset_eq_iff {α : Type u_1} [AddGroup α] (s : AddSubgroup α) {x : α} {y : α} :
                                  leftAddCoset x s = leftAddCoset y s -x + y s
                                  theorem leftCoset_eq_iff {α : Type u_1} [Group α] (s : Subgroup α) {x : α} {y : α} :
                                  leftCoset x s = leftCoset y s x⁻¹ * y s
                                  theorem rightAddCoset_eq_iff {α : Type u_1} [AddGroup α] (s : AddSubgroup α) {x : α} {y : α} :
                                  rightAddCoset (s) x = rightAddCoset (s) y y + -x s
                                  theorem rightCoset_eq_iff {α : Type u_1} [Group α] (s : Subgroup α) {x : α} {y : α} :
                                  rightCoset (s) x = rightCoset (s) y y * x⁻¹ s
                                  def QuotientAddGroup.leftRel {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :

                                  The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.

                                  Equations
                                  Instances For
                                    def QuotientGroup.leftRel {α : Type u_1} [Group α] (s : Subgroup α) :

                                    The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.

                                    Equations
                                    Instances For
                                      theorem QuotientAddGroup.leftRel_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {x : α} {y : α} :
                                      Setoid.r x y -x + y s
                                      theorem QuotientGroup.leftRel_apply {α : Type u_1} [Group α] {s : Subgroup α} {x : α} {y : α} :
                                      theorem QuotientAddGroup.leftRel_eq {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :
                                      Setoid.r = fun x y => -x + y s
                                      theorem QuotientGroup.leftRel_eq {α : Type u_1} [Group α] (s : Subgroup α) :
                                      Setoid.r = fun x y => x⁻¹ * y s
                                      theorem QuotientAddGroup.leftRelDecidable.proof_1 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (x : α) (y : α) :
                                      Decidable (Setoid.r x y) = Decidable ((fun x y => -x + y s) x y)
                                      instance QuotientAddGroup.leftRelDecidable {α : Type u_1} [AddGroup α] (s : AddSubgroup α) [DecidablePred fun x => x s] :
                                      DecidableRel Setoid.r
                                      Equations
                                      instance QuotientGroup.leftRelDecidable {α : Type u_1} [Group α] (s : Subgroup α) [DecidablePred fun x => x s] :
                                      DecidableRel Setoid.r
                                      Equations

                                      α ⧸ s is the quotient type representing the left cosets of s. If s is a normal subgroup, α ⧸ s is a group

                                      Equations

                                      α ⧸ s is the quotient type representing the left cosets of s. If s is a normal subgroup, α ⧸ s is a group

                                      Equations
                                      def QuotientAddGroup.rightRel {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :

                                      The equivalence relation corresponding to the partition of a group by right cosets of a subgroup.

                                      Equations
                                      Instances For
                                        def QuotientGroup.rightRel {α : Type u_1} [Group α] (s : Subgroup α) :

                                        The equivalence relation corresponding to the partition of a group by right cosets of a subgroup.

                                        Equations
                                        Instances For
                                          theorem QuotientAddGroup.rightRel_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {x : α} {y : α} :
                                          Setoid.r x y y + -x s
                                          theorem QuotientGroup.rightRel_apply {α : Type u_1} [Group α] {s : Subgroup α} {x : α} {y : α} :
                                          theorem QuotientAddGroup.rightRel_eq {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :
                                          Setoid.r = fun x y => y + -x s
                                          theorem QuotientGroup.rightRel_eq {α : Type u_1} [Group α] (s : Subgroup α) :
                                          Setoid.r = fun x y => y * x⁻¹ s
                                          theorem QuotientAddGroup.rightRelDecidable.proof_1 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (x : α) (y : α) :
                                          Decidable (Setoid.r x y) = Decidable ((fun x y => y + -x s) x y)
                                          instance QuotientAddGroup.rightRelDecidable {α : Type u_1} [AddGroup α] (s : AddSubgroup α) [DecidablePred fun x => x s] :
                                          DecidableRel Setoid.r
                                          Equations
                                          instance QuotientGroup.rightRelDecidable {α : Type u_1} [Group α] (s : Subgroup α) [DecidablePred fun x => x s] :
                                          DecidableRel Setoid.r
                                          Equations
                                          theorem QuotientAddGroup.quotientRightRelEquivQuotientLeftRel.proof_3 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (g : Quotient (QuotientAddGroup.rightRel s)) :
                                          Quotient.map' (fun g => -g) (_ : ∀ (a b : α), Setoid.r a bSetoid.r ((fun g => -g) a) ((fun g => -g) b)) (Quotient.map' (fun g => -g) (_ : ∀ (a b : α), Setoid.r a bSetoid.r ((fun g => -g) a) ((fun g => -g) b)) g) = g
                                          theorem QuotientAddGroup.quotientRightRelEquivQuotientLeftRel.proof_2 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (a : α) (b : α) :
                                          Setoid.r a bSetoid.r ((fun g => -g) a) ((fun g => -g) b)
                                          theorem QuotientAddGroup.quotientRightRelEquivQuotientLeftRel.proof_1 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (a : α) (b : α) :
                                          Setoid.r a bSetoid.r ((fun g => -g) a) ((fun g => -g) b)

                                          Right cosets are in bijection with left cosets.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            theorem QuotientAddGroup.quotientRightRelEquivQuotientLeftRel.proof_4 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (g : α s) :
                                            Quotient.map' (fun g => -g) (_ : ∀ (a b : α), Setoid.r a bSetoid.r ((fun g => -g) a) ((fun g => -g) b)) (Quotient.map' (fun g => -g) (_ : ∀ (a b : α), Setoid.r a bSetoid.r ((fun g => -g) a) ((fun g => -g) b)) g) = g

                                            Right cosets are in bijection with left cosets.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              abbrev QuotientAddGroup.mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (a : α) :
                                              α s

                                              The canonical map from an AddGroup α to the quotient α ⧸ s.

                                              Equations
                                              Instances For
                                                @[inline, reducible]
                                                abbrev QuotientGroup.mk {α : Type u_1} [Group α] {s : Subgroup α} (a : α) :
                                                α s

                                                The canonical map from a group α to the quotient α ⧸ s.

                                                Equations
                                                Instances For
                                                  theorem QuotientAddGroup.mk_surjective {α : Type u_1} [AddGroup α] {s : AddSubgroup α} :
                                                  Function.Surjective QuotientAddGroup.mk
                                                  theorem QuotientGroup.mk_surjective {α : Type u_1} [Group α] {s : Subgroup α} :
                                                  Function.Surjective QuotientGroup.mk
                                                  @[simp]
                                                  theorem QuotientAddGroup.range_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} :
                                                  Set.range QuotientAddGroup.mk = Set.univ
                                                  @[simp]
                                                  theorem QuotientGroup.range_mk {α : Type u_1} [Group α] {s : Subgroup α} :
                                                  Set.range QuotientGroup.mk = Set.univ
                                                  theorem QuotientAddGroup.induction_on {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} (x : α s) (H : (z : α) → C z) :
                                                  C x
                                                  theorem QuotientGroup.induction_on {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} (x : α s) (H : (z : α) → C z) :
                                                  C x
                                                  Equations
                                                  • QuotientAddGroup.instCoeQuotientAddSubgroupInstHasQuotientAddSubgroup = { coe := QuotientAddGroup.mk }
                                                  Equations
                                                  • QuotientGroup.instCoeQuotientSubgroupInstHasQuotientSubgroup = { coe := QuotientGroup.mk }
                                                  theorem QuotientAddGroup.induction_on' {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} (x : α s) (H : (z : α) → C z) :
                                                  C x
                                                  theorem QuotientGroup.induction_on' {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} (x : α s) (H : (z : α) → C z) :
                                                  C x
                                                  @[simp]
                                                  theorem QuotientAddGroup.quotient_liftOn_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {β : Sort u_2} (f : αβ) (h : ∀ (a b : α), Setoid.r a bf a = f b) (x : α) :
                                                  Quotient.liftOn' (x) f h = f x
                                                  @[simp]
                                                  theorem QuotientGroup.quotient_liftOn_mk {α : Type u_1} [Group α] {s : Subgroup α} {β : Sort u_2} (f : αβ) (h : ∀ (a b : α), Setoid.r a bf a = f b) (x : α) :
                                                  Quotient.liftOn' (x) f h = f x
                                                  theorem QuotientAddGroup.forall_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} :
                                                  ((x : α s) → C x) (x : α) → C x
                                                  theorem QuotientGroup.forall_mk {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} :
                                                  ((x : α s) → C x) (x : α) → C x
                                                  theorem QuotientAddGroup.exists_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} :
                                                  (x, C x) x, C x
                                                  theorem QuotientGroup.exists_mk {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} :
                                                  (x, C x) x, C x
                                                  theorem QuotientAddGroup.eq {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {a : α} {b : α} :
                                                  a = b -a + b s
                                                  theorem QuotientGroup.eq {α : Type u_1} [Group α] {s : Subgroup α} {a : α} {b : α} :
                                                  a = b a⁻¹ * b s
                                                  theorem QuotientAddGroup.eq' {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {a : α} {b : α} :
                                                  a = b -a + b s
                                                  theorem QuotientGroup.eq' {α : Type u_1} [Group α] {s : Subgroup α} {a : α} {b : α} :
                                                  a = b a⁻¹ * b s
                                                  theorem QuotientAddGroup.out_eq' {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (a : α s) :
                                                  ↑(Quotient.out' a) = a
                                                  theorem QuotientGroup.out_eq' {α : Type u_1} [Group α] {s : Subgroup α} (a : α s) :
                                                  ↑(Quotient.out' a) = a
                                                  theorem QuotientAddGroup.mk_out'_eq_mul {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (g : α) :
                                                  h, Quotient.out' g = g + h
                                                  theorem QuotientGroup.mk_out'_eq_mul {α : Type u_1} [Group α] (s : Subgroup α) (g : α) :
                                                  h, Quotient.out' g = g * h
                                                  @[simp]
                                                  theorem QuotientAddGroup.mk_add_of_mem {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {b : α} (a : α) (hb : b s) :
                                                  ↑(a + b) = a
                                                  @[simp]
                                                  theorem QuotientGroup.mk_mul_of_mem {α : Type u_1} [Group α] {s : Subgroup α} {b : α} (a : α) (hb : b s) :
                                                  ↑(a * b) = a
                                                  theorem QuotientAddGroup.eq_class_eq_leftCoset {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (g : α) :
                                                  {x | x = g} = leftAddCoset g s
                                                  theorem QuotientGroup.eq_class_eq_leftCoset {α : Type u_1} [Group α] (s : Subgroup α) (g : α) :
                                                  {x | x = g} = leftCoset g s
                                                  theorem QuotientAddGroup.preimage_image_mk {α : Type u_1} [AddGroup α] (N : AddSubgroup α) (s : Set α) :
                                                  QuotientAddGroup.mk ⁻¹' (QuotientAddGroup.mk '' s) = ⋃ (x : { x // x N }), (fun x_1 => x_1 + x) ⁻¹' s
                                                  abbrev QuotientAddGroup.preimage_image_mk.match_2 {α : Type u_1} [AddGroup α] (N : AddSubgroup α) (s : Set α) (x : α) (motive : (x, x N x + x s) → Prop) :
                                                  (x : x, x N x + x s) → ((z : α) → (hz : z N) → (hxz : x + z s) → motive (_ : x, x N x + x s)) → motive x
                                                  Equations
                                                  Instances For
                                                    abbrev QuotientAddGroup.preimage_image_mk.match_1 {α : Type u_1} [AddGroup α] (N : AddSubgroup α) (s : Set α) (x : α) (motive : (x, x s -x + x N) → Prop) :
                                                    (x : x, x s -x + x N) → ((y : α) → (hs : y s) → (hN : -y + x N) → motive (_ : x, x s -x + x N)) → motive x
                                                    Equations
                                                    Instances For
                                                      theorem QuotientGroup.preimage_image_mk {α : Type u_1} [Group α] (N : Subgroup α) (s : Set α) :
                                                      QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' s) = ⋃ (x : { x // x N }), (fun x_1 => x_1 * x) ⁻¹' s
                                                      theorem QuotientAddGroup.preimage_image_mk_eq_iUnion_image {α : Type u_1} [AddGroup α] (N : AddSubgroup α) (s : Set α) :
                                                      QuotientAddGroup.mk ⁻¹' (QuotientAddGroup.mk '' s) = ⋃ (x : { x // x N }), (fun x_1 => x_1 + x) '' s
                                                      theorem QuotientGroup.preimage_image_mk_eq_iUnion_image {α : Type u_1} [Group α] (N : Subgroup α) (s : Set α) :
                                                      QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' s) = ⋃ (x : { x // x N }), (fun x_1 => x_1 * x) '' s
                                                      abbrev AddSubgroup.leftCosetEquivAddSubgroup.match_2 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (motive : { x // x s }Prop) :
                                                      (x : { x // x s }) → ((g : α) → (hg : g s) → motive { val := g, property := hg }) → motive x
                                                      Equations
                                                      Instances For
                                                        theorem AddSubgroup.leftCosetEquivAddSubgroup.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) (x : ↑(leftAddCoset g s)) :
                                                        -g + x s
                                                        def AddSubgroup.leftCosetEquivAddSubgroup {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) :
                                                        ↑(leftAddCoset g s) { x // x s }

                                                        The natural bijection between the cosets g + s and s.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For
                                                          abbrev AddSubgroup.leftCosetEquivAddSubgroup.match_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) (motive : ↑(leftAddCoset g s)Prop) :
                                                          (x : ↑(leftAddCoset g s)) → ((x : α) → (hx : x leftAddCoset g s) → motive { val := x, property := hx }) → motive x
                                                          Equations
                                                          Instances For
                                                            theorem AddSubgroup.leftCosetEquivAddSubgroup.proof_4 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) :
                                                            ∀ (x : { x // x s }), (fun x => { val := -g + x, property := (_ : -g + x s) }) ((fun x => { val := g + x, property := (_ : a, a s (fun x => g + x) a = g + x) }) x) = x
                                                            theorem AddSubgroup.leftCosetEquivAddSubgroup.proof_3 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) :
                                                            ∀ (x : ↑(leftAddCoset g s)), (fun x => { val := g + x, property := (_ : a, a s (fun x => g + x) a = g + x) }) ((fun x => { val := -g + x, property := (_ : -g + x s) }) x) = x
                                                            theorem AddSubgroup.leftCosetEquivAddSubgroup.proof_2 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) (x : { x // x s }) :
                                                            a, a s (fun x => g + x) a = g + x
                                                            def Subgroup.leftCosetEquivSubgroup {α : Type u_1} [Group α] {s : Subgroup α} (g : α) :
                                                            ↑(leftCoset g s) { x // x s }

                                                            The natural bijection between a left coset g * s and s.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              theorem AddSubgroup.rightCosetEquivAddSubgroup.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) (x : ↑(rightAddCoset (s) g)) :
                                                              x + -g s
                                                              theorem AddSubgroup.rightCosetEquivAddSubgroup.proof_4 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) :
                                                              ∀ (x : { x // x s }), (fun x => { val := x + -g, property := (_ : x + -g s) }) ((fun x => { val := x + g, property := (_ : a, a s (fun x => x + g) a = x + g) }) x) = x
                                                              theorem AddSubgroup.rightCosetEquivAddSubgroup.proof_3 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) :
                                                              ∀ (x : ↑(rightAddCoset (s) g)), (fun x => { val := x + g, property := (_ : a, a s (fun x => x + g) a = x + g) }) ((fun x => { val := x + -g, property := (_ : x + -g s) }) x) = x
                                                              theorem AddSubgroup.rightCosetEquivAddSubgroup.proof_2 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) (x : { x // x s }) :
                                                              a, a s (fun x => x + g) a = x + g
                                                              abbrev AddSubgroup.rightCosetEquivAddSubgroup.match_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) (motive : ↑(rightAddCoset (s) g)Prop) :
                                                              (x : ↑(rightAddCoset (s) g)) → ((x : α) → (hx : x rightAddCoset (s) g) → motive { val := x, property := hx }) → motive x
                                                              Equations
                                                              Instances For
                                                                def AddSubgroup.rightCosetEquivAddSubgroup {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (g : α) :
                                                                ↑(rightAddCoset (s) g) { x // x s }

                                                                The natural bijection between the cosets s + g and s.

                                                                Equations
                                                                • One or more equations did not get rendered due to their size.
                                                                Instances For
                                                                  def Subgroup.rightCosetEquivSubgroup {α : Type u_1} [Group α] {s : Subgroup α} (g : α) :
                                                                  ↑(rightCoset (s) g) { x // x s }

                                                                  The natural bijection between a right coset s * g and s.

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For
                                                                    theorem AddSubgroup.addGroupEquivQuotientProdAddSubgroup.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (L : α s) :
                                                                    ({ x // x = L } ↑(leftAddCoset (Quotient.out' L) s)) = ({ x // x = L } {x | x = ↑(Quotient.out' L)})
                                                                    theorem AddSubgroup.addGroupEquivQuotientProdAddSubgroup.proof_2 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (L : α s) :
                                                                    ({ x // Quotient.mk'' x = L } { x // Quotient.mk'' x = Quotient.mk'' (Quotient.out' L) }) = ({ x // Quotient.mk'' x = L } { x // Quotient.mk'' x = L })
                                                                    noncomputable def AddSubgroup.addGroupEquivQuotientProdAddSubgroup {α : Type u_1} [AddGroup α] {s : AddSubgroup α} :
                                                                    α (α s) × { x // x s }

                                                                    A (non-canonical) bijection between an add_group α and the product (α/s) × s

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For
                                                                      noncomputable def Subgroup.groupEquivQuotientProdSubgroup {α : Type u_1} [Group α] {s : Subgroup α} :
                                                                      α (α s) × { x // x s }

                                                                      A (non-canonical) bijection between a group α and the product (α/s) × s

                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        def AddSubgroup.quotientEquivOfEq {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s = t) :
                                                                        α s α t

                                                                        If two subgroups M and N of G are equal, their quotients are in bijection.

                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          theorem AddSubgroup.quotientEquivOfEq.proof_2 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s = t) (_a : α) (_b : α) (h' : Setoid.r _a _b) :
                                                                          Setoid.r (id _a) (id _b)
                                                                          theorem AddSubgroup.quotientEquivOfEq.proof_3 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s = t) (q : α s) :
                                                                          Quotient.map' id (_ : ∀ (_a _b : α), Setoid.r _a _bSetoid.r (id _a) (id _b)) (Quotient.map' id (_ : ∀ (_a _b : α), Setoid.r _a _bSetoid.r (id _a) (id _b)) q) = q
                                                                          theorem AddSubgroup.quotientEquivOfEq.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s = t) (_a : α) (_b : α) (h' : Setoid.r _a _b) :
                                                                          Setoid.r (id _a) (id _b)
                                                                          theorem AddSubgroup.quotientEquivOfEq.proof_4 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s = t) (q : α t) :
                                                                          Quotient.map' id (_ : ∀ (_a _b : α), Setoid.r _a _bSetoid.r (id _a) (id _b)) (Quotient.map' id (_ : ∀ (_a _b : α), Setoid.r _a _bSetoid.r (id _a) (id _b)) q) = q
                                                                          def Subgroup.quotientEquivOfEq {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h : s = t) :
                                                                          α s α t

                                                                          If two subgroups M and N of G are equal, their quotients are in bijection.

                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For
                                                                            theorem Subgroup.quotientEquivOfEq_mk {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h : s = t) (a : α) :
                                                                            ↑(Subgroup.quotientEquivOfEq h) a = a
                                                                            theorem AddSubgroup.quotientEquivSumOfLE'.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (b : α) (c : α) (h : Setoid.r b c) :
                                                                            Setoid.r (id b) (id c)
                                                                            theorem AddSubgroup.quotientEquivSumOfLE'.proof_6 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientAddGroup.mk) (t : (α t) × { x // x t } AddSubgroup.addSubgroupOf s t) :
                                                                            (fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b cSetoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) (_ : ∀ (b c : α), Setoid.r b cSetoid.r ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) b) ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) c)) a)) ((fun a => Quotient.map' (fun b => f a.fst + b) (_ : ∀ (b c : { x // x t }), Setoid.r b cSetoid.r ((fun b => f a.fst + b) b) ((fun b => f a.fst + b) c)) a.snd) t) = t
                                                                            def AddSubgroup.quotientEquivSumOfLE' {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientAddGroup.mk) :
                                                                            α s (α t) × { x // x t } AddSubgroup.addSubgroupOf s t

                                                                            If H ≤ K, then G/H ≃ G/K × K/H constructively, using the provided right inverse of the quotient map G → G/K. The classical version is AddSubgroup.quotientEquivSumOfLE.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              theorem AddSubgroup.quotientEquivSumOfLE'.proof_4 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (f : α tα) (a : (α t) × { x // x t } AddSubgroup.addSubgroupOf s t) (b : { x // x t }) (c : { x // x t }) (h : Setoid.r b c) :
                                                                              Setoid.r ((fun b => f a.fst + b) b) ((fun b => f a.fst + b) c)
                                                                              theorem AddSubgroup.quotientEquivSumOfLE'.proof_3 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientAddGroup.mk) (b : α) (c : α) (h : Setoid.r b c) :
                                                                              Setoid.r ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) b) ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) c)
                                                                              theorem AddSubgroup.quotientEquivSumOfLE'.proof_2 {α : Type u_1} [AddGroup α] {t : AddSubgroup α} (f : α tα) (hf : Function.RightInverse f QuotientAddGroup.mk) (g : α) :
                                                                              -f (Quotient.mk'' g) + g t
                                                                              theorem AddSubgroup.quotientEquivSumOfLE'.proof_5 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientAddGroup.mk) (q : Quotient (QuotientAddGroup.leftRel s)) :
                                                                              (fun a => Quotient.map' (fun b => f a.fst + b) (_ : ∀ (b c : { x // x t }), Setoid.r b cSetoid.r ((fun b => f a.fst + b) b) ((fun b => f a.fst + b) c)) a.snd) ((fun a => (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b cSetoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) (_ : ∀ (b c : α), Setoid.r b cSetoid.r ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) b) ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) c)) a)) q) = q
                                                                              @[simp]
                                                                              theorem Subgroup.quotientEquivProdOfLE'_apply {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientGroup.mk) (a : α s) :
                                                                              ↑(Subgroup.quotientEquivProdOfLE' h_le f hf) a = (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b cSetoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g t) }) (_ : ∀ (b c : α), Setoid.r b cSetoid.r ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g t) }) b) ((fun g => { val := (f (Quotient.mk'' g))⁻¹ * g, property := (_ : (f (Quotient.mk'' g))⁻¹ * g t) }) c)) a)
                                                                              @[simp]
                                                                              theorem AddSubgroup.quotientEquivSumOfLE'_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientAddGroup.mk) (a : α s) :
                                                                              ↑(AddSubgroup.quotientEquivSumOfLE' h_le f hf) a = (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b cSetoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) (_ : ∀ (b c : α), Setoid.r b cSetoid.r ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) b) ((fun g => { val := -f (Quotient.mk'' g) + g, property := (_ : -f (Quotient.mk'' g) + g t) }) c)) a)
                                                                              @[simp]
                                                                              theorem AddSubgroup.quotientEquivSumOfLE'_symm_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientAddGroup.mk) (a : (α t) × { x // x t } AddSubgroup.addSubgroupOf s t) :
                                                                              (AddSubgroup.quotientEquivSumOfLE' h_le f hf).symm a = Quotient.map' (fun b => f a.fst + b) (_ : ∀ (b c : { x // x t }), Setoid.r b cSetoid.r ((fun b => f a.fst + b) b) ((fun b => f a.fst + b) c)) a.snd
                                                                              @[simp]
                                                                              theorem Subgroup.quotientEquivProdOfLE'_symm_apply {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientGroup.mk) (a : (α t) × { x // x t } Subgroup.subgroupOf s t) :
                                                                              (Subgroup.quotientEquivProdOfLE' h_le f hf).symm a = Quotient.map' (fun b => f a.fst * b) (_ : ∀ (b c : { x // x t }), Setoid.r b cSetoid.r ((fun b => f a.fst * b) b) ((fun b => f a.fst * b) c)) a.snd
                                                                              def Subgroup.quotientEquivProdOfLE' {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h_le : s t) (f : α tα) (hf : Function.RightInverse f QuotientGroup.mk) :
                                                                              α s (α t) × { x // x t } Subgroup.subgroupOf s t

                                                                              If H ≤ K, then G/H ≃ G/K × K/H constructively, using the provided right inverse of the quotient map G → G/K. The classical version is Subgroup.quotientEquivProdOfLE.

                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For
                                                                                noncomputable def AddSubgroup.quotientEquivSumOfLE {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) :
                                                                                α s (α t) × { x // x t } AddSubgroup.addSubgroupOf s t

                                                                                If H ≤ K, then G/H ≃ G/K × K/H nonconstructively. The constructive version is quotientEquivProdOfLE'.

                                                                                Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem AddSubgroup.quotientEquivSumOfLE_symm_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (a : (α t) × { x // x t } AddSubgroup.addSubgroupOf s t) :
                                                                                  (AddSubgroup.quotientEquivSumOfLE h_le).symm a = Quotient.map' (fun b => Quotient.out' a.fst + b) (_ : ∀ (b c : { x // x t }), Setoid.r b cSetoid.r ((fun b => Quotient.out' a.fst + b) b) ((fun b => Quotient.out' a.fst + b) c)) a.snd
                                                                                  @[simp]
                                                                                  theorem AddSubgroup.quotientEquivSumOfLE_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h_le : s t) (a : α s) :
                                                                                  ↑(AddSubgroup.quotientEquivSumOfLE h_le) a = (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b cSetoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := -Quotient.out' (Quotient.mk'' g) + g, property := (_ : -Quotient.out' (Quotient.mk'' g) + g t) }) (_ : ∀ (b c : α), Setoid.r b cSetoid.r ((fun g => { val := -Quotient.out' (Quotient.mk'' g) + g, property := (_ : -Quotient.out' (Quotient.mk'' g) + g t) }) b) ((fun g => { val := -Quotient.out' (Quotient.mk'' g) + g, property := (_ : -Quotient.out' (Quotient.mk'' g) + g t) }) c)) a)
                                                                                  @[simp]
                                                                                  theorem Subgroup.quotientEquivProdOfLE_symm_apply {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h_le : s t) (a : (α t) × { x // x t } Subgroup.subgroupOf s t) :
                                                                                  (Subgroup.quotientEquivProdOfLE h_le).symm a = Quotient.map' (fun b => Quotient.out' a.fst * b) (_ : ∀ (b c : { x // x t }), Setoid.r b cSetoid.r ((fun b => Quotient.out' a.fst * b) b) ((fun b => Quotient.out' a.fst * b) c)) a.snd
                                                                                  @[simp]
                                                                                  theorem Subgroup.quotientEquivProdOfLE_apply {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h_le : s t) (a : α s) :
                                                                                  ↑(Subgroup.quotientEquivProdOfLE h_le) a = (Quotient.map' id (_ : ∀ (b c : α), Setoid.r b cSetoid.r (id b) (id c)) a, Quotient.map' (fun g => { val := (Quotient.out' (Quotient.mk'' g))⁻¹ * g, property := (_ : (Quotient.out' (Quotient.mk'' g))⁻¹ * g t) }) (_ : ∀ (b c : α), Setoid.r b cSetoid.r ((fun g => { val := (Quotient.out' (Quotient.mk'' g))⁻¹ * g, property := (_ : (Quotient.out' (Quotient.mk'' g))⁻¹ * g t) }) b) ((fun g => { val := (Quotient.out' (Quotient.mk'' g))⁻¹ * g, property := (_ : (Quotient.out' (Quotient.mk'' g))⁻¹ * g t) }) c)) a)
                                                                                  noncomputable def Subgroup.quotientEquivProdOfLE {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h_le : s t) :
                                                                                  α s (α t) × { x // x t } Subgroup.subgroupOf s t

                                                                                  If H ≤ K, then G/H ≃ G/K × K/H nonconstructively. The constructive version is quotientEquivProdOfLE'.

                                                                                  Equations
                                                                                  Instances For

                                                                                    If s ≤ t, then there is an embedding s ⧸ H.addSubgroupOf s ↪ t ⧸ H.addSubgroupOf t.

                                                                                    Equations
                                                                                    • One or more equations did not get rendered due to their size.
                                                                                    Instances For
                                                                                      theorem AddSubgroup.quotientAddSubgroupOfEmbeddingOfLE.proof_2 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (H : AddSubgroup α) (h : s t) (q₁ : Quotient (QuotientAddGroup.leftRel (AddSubgroup.addSubgroupOf H s))) (q₂ : Quotient (QuotientAddGroup.leftRel (AddSubgroup.addSubgroupOf H s))) :
                                                                                      Quotient.map' ↑(AddSubgroup.inclusion h) (_ : ∀ (a b : { x // x s }), Setoid.r a bSetoid.r (↑(AddSubgroup.inclusion h) a) (↑(AddSubgroup.inclusion h) b)) q₁ = Quotient.map' ↑(AddSubgroup.inclusion h) (_ : ∀ (a b : { x // x s }), Setoid.r a bSetoid.r (↑(AddSubgroup.inclusion h) a) (↑(AddSubgroup.inclusion h) b)) q₂q₁ = q₂
                                                                                      theorem AddSubgroup.quotientAddSubgroupOfEmbeddingOfLE.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (H : AddSubgroup α) (h : s t) (a : { x // x s }) (b : { x // x s }) :
                                                                                      def Subgroup.quotientSubgroupOfEmbeddingOfLE {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (H : Subgroup α) (h : s t) :
                                                                                      { x // x s } Subgroup.subgroupOf H s { x // x t } Subgroup.subgroupOf H t

                                                                                      If s ≤ t, then there is an embedding s ⧸ H.subgroupOf s ↪ t ⧸ H.subgroupOf t.

                                                                                      Equations
                                                                                      • One or more equations did not get rendered due to their size.
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem AddSubgroup.quotientAddSubgroupOfEmbeddingOfLE_apply_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (H : AddSubgroup α) (h : s t) (g : { x // x s }) :
                                                                                        @[simp]
                                                                                        theorem Subgroup.quotientSubgroupOfEmbeddingOfLE_apply_mk {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (H : Subgroup α) (h : s t) (g : { x // x s }) :
                                                                                        def AddSubgroup.quotientAddSubgroupOfMapOfLE {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (H : AddSubgroup α) (h : s t) :
                                                                                        { x // x H } AddSubgroup.addSubgroupOf s H{ x // x H } AddSubgroup.addSubgroupOf t H

                                                                                        If s ≤ t, then there is a map H ⧸ s.addSubgroupOf H → H ⧸ t.addSubgroupOf H.

                                                                                        Equations
                                                                                        Instances For
                                                                                          theorem AddSubgroup.quotientAddSubgroupOfMapOfLE.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (H : AddSubgroup α) (h : s t) (a : { x // x H }) (b : { x // x H }) :
                                                                                          Setoid.r a bSetoid.r (id a) (id b)
                                                                                          def Subgroup.quotientSubgroupOfMapOfLE {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (H : Subgroup α) (h : s t) :
                                                                                          { x // x H } Subgroup.subgroupOf s H{ x // x H } Subgroup.subgroupOf t H

                                                                                          If s ≤ t, then there is a map H ⧸ s.subgroupOf H → H ⧸ t.subgroupOf H.

                                                                                          Equations
                                                                                          Instances For
                                                                                            @[simp]
                                                                                            theorem AddSubgroup.quotientAddSubgroupOfMapOfLE_apply_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (H : AddSubgroup α) (h : s t) (g : { x // x H }) :
                                                                                            @[simp]
                                                                                            theorem Subgroup.quotientSubgroupOfMapOfLE_apply_mk {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (H : Subgroup α) (h : s t) (g : { x // x H }) :
                                                                                            theorem AddSubgroup.quotientMapOfLE.proof_1 {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s t) (a : α) (b : α) :
                                                                                            Setoid.r a bSetoid.r (id a) (id b)
                                                                                            def AddSubgroup.quotientMapOfLE {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s t) :
                                                                                            α sα t

                                                                                            If s ≤ t, then there is a map α ⧸ s → α ⧸ t.

                                                                                            Equations
                                                                                            Instances For
                                                                                              def Subgroup.quotientMapOfLE {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h : s t) :
                                                                                              α sα t

                                                                                              If s ≤ t, then there is a map α ⧸ s → α ⧸ t.

                                                                                              Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem AddSubgroup.quotientMapOfLE_apply_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s t) (g : α) :
                                                                                                @[simp]
                                                                                                theorem Subgroup.quotientMapOfLE_apply_mk {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h : s t) (g : α) :
                                                                                                theorem AddSubgroup.quotientiInfAddSubgroupOfEmbedding.proof_1 {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (i : ι) :
                                                                                                iInf f f i
                                                                                                theorem AddSubgroup.quotientiInfAddSubgroupOfEmbedding.proof_2 {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (H : AddSubgroup α) (q₁ : Quotient (QuotientAddGroup.leftRel (AddSubgroup.addSubgroupOf (⨅ (i : ι), f i) H))) (q₂ : Quotient (QuotientAddGroup.leftRel (AddSubgroup.addSubgroupOf (⨅ (i : ι), f i) H))) :
                                                                                                (fun q i => AddSubgroup.quotientAddSubgroupOfMapOfLE H (_ : iInf f f i) q) q₁ = (fun q i => AddSubgroup.quotientAddSubgroupOfMapOfLE H (_ : iInf f f i) q) q₂q₁ = q₂
                                                                                                def AddSubgroup.quotientiInfAddSubgroupOfEmbedding {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (H : AddSubgroup α) :
                                                                                                { x // x H } AddSubgroup.addSubgroupOf (⨅ (i : ι), f i) H (i : ι) → { x // x H } AddSubgroup.addSubgroupOf (f i) H

                                                                                                The natural embedding H ⧸ (⨅ i, f i).addSubgroupOf H) ↪ Π i, H ⧸ (f i).addSubgroupOf H.

                                                                                                Equations
                                                                                                • One or more equations did not get rendered due to their size.
                                                                                                Instances For
                                                                                                  @[simp]
                                                                                                  theorem AddSubgroup.quotientiInfAddSubgroupOfEmbedding_apply {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (H : AddSubgroup α) (q : { x // x H } AddSubgroup.addSubgroupOf (⨅ (i : ι), f i) H) (i : ι) :
                                                                                                  @[simp]
                                                                                                  theorem Subgroup.quotientiInfSubgroupOfEmbedding_apply {α : Type u_1} [Group α] {ι : Type u_2} (f : ιSubgroup α) (H : Subgroup α) (q : { x // x H } Subgroup.subgroupOf (⨅ (i : ι), f i) H) (i : ι) :
                                                                                                  def Subgroup.quotientiInfSubgroupOfEmbedding {α : Type u_1} [Group α] {ι : Type u_2} (f : ιSubgroup α) (H : Subgroup α) :
                                                                                                  { x // x H } Subgroup.subgroupOf (⨅ (i : ι), f i) H (i : ι) → { x // x H } Subgroup.subgroupOf (f i) H

                                                                                                  The natural embedding H ⧸ (⨅ i, f i).subgroupOf H ↪ Π i, H ⧸ (f i).subgroupOf H.

                                                                                                  Equations
                                                                                                  • One or more equations did not get rendered due to their size.
                                                                                                  Instances For
                                                                                                    @[simp]
                                                                                                    theorem AddSubgroup.quotientiInfAddSubgroupOfEmbedding_apply_mk {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (H : AddSubgroup α) (g : { x // x H }) (i : ι) :
                                                                                                    @[simp]
                                                                                                    theorem Subgroup.quotientiInfSubgroupOfEmbedding_apply_mk {α : Type u_1} [Group α] {ι : Type u_2} (f : ιSubgroup α) (H : Subgroup α) (g : { x // x H }) (i : ι) :
                                                                                                    theorem AddSubgroup.quotientiInfEmbedding.proof_1 {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (i : ι) :
                                                                                                    iInf f f i
                                                                                                    theorem AddSubgroup.quotientiInfEmbedding.proof_2 {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (q₁ : Quotient (QuotientAddGroup.leftRel (⨅ (i : ι), f i))) (q₂ : Quotient (QuotientAddGroup.leftRel (⨅ (i : ι), f i))) :
                                                                                                    (fun q i => AddSubgroup.quotientMapOfLE (_ : iInf f f i) q) q₁ = (fun q i => AddSubgroup.quotientMapOfLE (_ : iInf f f i) q) q₂q₁ = q₂
                                                                                                    def AddSubgroup.quotientiInfEmbedding {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) :
                                                                                                    α ⨅ (i : ι), f i (i : ι) → α f i

                                                                                                    The natural embedding α ⧸ (⨅ i, f i) ↪ Π i, α ⧸ f i.

                                                                                                    Equations
                                                                                                    • One or more equations did not get rendered due to their size.
                                                                                                    Instances For
                                                                                                      @[simp]
                                                                                                      theorem AddSubgroup.quotientiInfEmbedding_apply {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (q : α ⨅ (i : ι), f i) (i : ι) :
                                                                                                      @[simp]
                                                                                                      theorem Subgroup.quotientiInfEmbedding_apply {α : Type u_1} [Group α] {ι : Type u_2} (f : ιSubgroup α) (q : α ⨅ (i : ι), f i) (i : ι) :
                                                                                                      def Subgroup.quotientiInfEmbedding {α : Type u_1} [Group α] {ι : Type u_2} (f : ιSubgroup α) :
                                                                                                      α ⨅ (i : ι), f i (i : ι) → α f i

                                                                                                      The natural embedding α ⧸ (⨅ i, f i) ↪ Π i, α ⧸ f i.

                                                                                                      Equations
                                                                                                      • One or more equations did not get rendered due to their size.
                                                                                                      Instances For
                                                                                                        @[simp]
                                                                                                        theorem AddSubgroup.quotientiInfEmbedding_apply_mk {α : Type u_1} [AddGroup α] {ι : Type u_2} (f : ιAddSubgroup α) (g : α) (i : ι) :
                                                                                                        @[simp]
                                                                                                        theorem Subgroup.quotientiInfEmbedding_apply_mk {α : Type u_1} [Group α] {ι : Type u_2} (f : ιSubgroup α) (g : α) (i : ι) :
                                                                                                        ↑(Subgroup.quotientiInfEmbedding f) (g) i = g
                                                                                                        theorem AddSubgroup.card_eq_card_quotient_add_card_addSubgroup {α : Type u_1} [AddGroup α] [Fintype α] (s : AddSubgroup α) [Fintype { x // x s }] [DecidablePred fun a => a s] :
                                                                                                        theorem Subgroup.card_eq_card_quotient_mul_card_subgroup {α : Type u_1} [Group α] [Fintype α] (s : Subgroup α) [Fintype { x // x s }] [DecidablePred fun a => a s] :
                                                                                                        theorem AddSubgroup.card_addSubgroup_dvd_card {α : Type u_1} [AddGroup α] [Fintype α] (s : AddSubgroup α) [Fintype { x // x s }] :

                                                                                                        Lagrange's Theorem: The order of an additive subgroup divides the order of its ambient additive group.

                                                                                                        theorem Subgroup.card_subgroup_dvd_card {α : Type u_1} [Group α] [Fintype α] (s : Subgroup α) [Fintype { x // x s }] :

                                                                                                        Lagrange's Theorem: The order of a subgroup divides the order of its ambient group.

                                                                                                        theorem Subgroup.card_quotient_dvd_card {α : Type u_1} [Group α] [Fintype α] (s : Subgroup α) [DecidablePred fun x => x s] :
                                                                                                        theorem AddSubgroup.card_dvd_of_injective {α : Type u_1} [AddGroup α] {H : Type u_2} [AddGroup H] [Fintype α] [Fintype H] (f : α →+ H) (hf : Function.Injective f) :
                                                                                                        theorem Subgroup.card_dvd_of_injective {α : Type u_1} [Group α] {H : Type u_2} [Group H] [Fintype α] [Fintype H] (f : α →* H) (hf : Function.Injective f) :
                                                                                                        theorem AddSubgroup.card_dvd_of_le {α : Type u_1} [AddGroup α] {H : AddSubgroup α} {K : AddSubgroup α} [Fintype { x // x H }] [Fintype { x // x K }] (hHK : H K) :
                                                                                                        Fintype.card { x // x H } Fintype.card { x // x K }
                                                                                                        theorem Subgroup.card_dvd_of_le {α : Type u_1} [Group α] {H : Subgroup α} {K : Subgroup α} [Fintype { x // x H }] [Fintype { x // x K }] (hHK : H K) :
                                                                                                        Fintype.card { x // x H } Fintype.card { x // x K }
                                                                                                        theorem AddSubgroup.card_comap_dvd_of_injective {α : Type u_1} [AddGroup α] {H : Type u_2} [AddGroup H] (K : AddSubgroup H) [Fintype { x // x K }] (f : α →+ H) [Fintype { x // x AddSubgroup.comap f K }] (hf : Function.Injective f) :
                                                                                                        theorem Subgroup.card_comap_dvd_of_injective {α : Type u_1} [Group α] {H : Type u_2} [Group H] (K : Subgroup H) [Fintype { x // x K }] (f : α →* H) [Fintype { x // x Subgroup.comap f K }] (hf : Function.Injective f) :
                                                                                                        Fintype.card { x // x Subgroup.comap f K } Fintype.card { x // x K }
                                                                                                        abbrev QuotientAddGroup.preimageMkEquivAddSubgroupProdSet.match_1 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) (motive : ↑(QuotientAddGroup.mk ⁻¹' t)Prop) :
                                                                                                        (x : ↑(QuotientAddGroup.mk ⁻¹' t)) → ((a : α) → (ha : a QuotientAddGroup.mk ⁻¹' t) → motive { val := a, property := ha }) → motive x
                                                                                                        Equations
                                                                                                        Instances For
                                                                                                          theorem QuotientAddGroup.preimageMkEquivAddSubgroupProdSet.proof_2 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) (a : ↑(QuotientAddGroup.mk ⁻¹' t)) :
                                                                                                          a QuotientAddGroup.mk ⁻¹' t
                                                                                                          theorem QuotientAddGroup.preimageMkEquivAddSubgroupProdSet.proof_1 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) (a : ↑(QuotientAddGroup.mk ⁻¹' t)) :
                                                                                                          -Quotient.out' a + a s
                                                                                                          noncomputable def QuotientAddGroup.preimageMkEquivAddSubgroupProdSet {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) :
                                                                                                          ↑(QuotientAddGroup.mk ⁻¹' t) { x // x s } × t

                                                                                                          If s is a subgroup of the additive group α, and t is a subset of α ⧸ s, then there is a (typically non-canonical) bijection between the preimage of t in α and the product s × t.

                                                                                                          Equations
                                                                                                          • One or more equations did not get rendered due to their size.
                                                                                                          Instances For
                                                                                                            theorem QuotientAddGroup.preimageMkEquivAddSubgroupProdSet.proof_3 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) (a : { x // x s } × t) :
                                                                                                            ↑(Quotient.out' a.snd + a.fst) t
                                                                                                            abbrev QuotientAddGroup.preimageMkEquivAddSubgroupProdSet.match_2 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) (motive : { x // x s } × tProp) :
                                                                                                            (x : { x // x s } × t) → ((a : α) → (ha : a s) → (x : α s) → (hx : x t) → motive ({ val := a, property := ha }, { val := x, property := hx })) → motive x
                                                                                                            Equations
                                                                                                            • One or more equations did not get rendered due to their size.
                                                                                                            Instances For
                                                                                                              theorem QuotientAddGroup.preimageMkEquivAddSubgroupProdSet.proof_5 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) :
                                                                                                              ∀ (x : { x // x s } × t), (fun a => ({ val := -Quotient.out' a + a, property := (_ : -Quotient.out' a + a s) }, { val := a, property := (_ : a QuotientAddGroup.mk ⁻¹' t) })) ((fun a => { val := Quotient.out' a.snd + a.fst, property := (_ : ↑(Quotient.out' a.snd + a.fst) t) }) x) = x
                                                                                                              theorem QuotientAddGroup.preimageMkEquivAddSubgroupProdSet.proof_4 {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set (α s)) :
                                                                                                              ∀ (x : ↑(QuotientAddGroup.mk ⁻¹' t)), (fun a => { val := Quotient.out' a.snd + a.fst, property := (_ : ↑(Quotient.out' a.snd + a.fst) t) }) ((fun a => ({ val := -Quotient.out' a + a, property := (_ : -Quotient.out' a + a s) }, { val := a, property := (_ : a QuotientAddGroup.mk ⁻¹' t) })) x) = x
                                                                                                              noncomputable def QuotientGroup.preimageMkEquivSubgroupProdSet {α : Type u_1} [Group α] (s : Subgroup α) (t : Set (α s)) :
                                                                                                              ↑(QuotientGroup.mk ⁻¹' t) { x // x s } × t

                                                                                                              If s is a subgroup of the group α, and t is a subset of α ⧸ s, then there is a (typically non-canonical) bijection between the preimage of t in α and the product s × t.

                                                                                                              Equations
                                                                                                              • One or more equations did not get rendered due to their size.
                                                                                                              Instances For