Documentation

Mathlib.Data.Set.Pairwise.Lattice

Relations holding pairwise #

In this file we prove many facts about Pairwise and the set lattice.

theorem Set.pairwise_iUnion {α : Type u_1} {κ : Sort u_6} {r : ααProp} {f : κSet α} (h : Directed (fun x x_1 => x x_1) f) :
Set.Pairwise (⋃ (n : κ), f n) r ∀ (n : κ), Set.Pairwise (f n) r
theorem Set.pairwise_sUnion {α : Type u_1} {r : ααProp} {s : Set (Set α)} (h : DirectedOn (fun x x_1 => x x_1) s) :
Set.Pairwise (⋃₀ s) r ∀ (a : Set α), a sSet.Pairwise a r
theorem Set.pairwiseDisjoint_iUnion {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [PartialOrder α] [OrderBot α] {f : ια} {g : ι'Set ι} (h : Directed (fun x x_1 => x x_1) g) :
Set.PairwiseDisjoint (⋃ (n : ι'), g n) f ∀ ⦃n : ι'⦄, Set.PairwiseDisjoint (g n) f
theorem Set.pairwiseDisjoint_sUnion {α : Type u_1} {ι : Type u_4} [PartialOrder α] [OrderBot α] {f : ια} {s : Set (Set ι)} (h : DirectedOn (fun x x_1 => x x_1) s) :
Set.PairwiseDisjoint (⋃₀ s) f ∀ ⦃a : Set ι⦄, a sSet.PairwiseDisjoint a f
theorem Set.PairwiseDisjoint.biUnion {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [CompleteLattice α] {s : Set ι'} {g : ι'Set ι} {f : ια} (hs : Set.PairwiseDisjoint s fun i' => ⨆ (i : ι) (_ : i g i'), f i) (hg : ∀ (i : ι'), i sSet.PairwiseDisjoint (g i) f) :
Set.PairwiseDisjoint (⋃ (i : ι') (_ : i s), g i) f

Bind operation for Set.PairwiseDisjoint. If you want to only consider finsets of indices, you can use Set.PairwiseDisjoint.biUnion_finset.

theorem Set.PairwiseDisjoint.prod_left {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [CompleteLattice α] {s : Set ι} {t : Set ι'} {f : ι × ι'α} (hs : Set.PairwiseDisjoint s fun i => ⨆ (i' : ι') (_ : i' t), f (i, i')) (ht : Set.PairwiseDisjoint t fun i' => ⨆ (i : ι) (_ : i s), f (i, i')) :

If the suprema of columns are pairwise disjoint and suprema of rows as well, then everything is pairwise disjoint. Not to be confused with Set.PairwiseDisjoint.prod.

theorem Set.pairwiseDisjoint_prod_left {α : Type u_1} {ι : Type u_4} {ι' : Type u_5} [Order.Frame α] {s : Set ι} {t : Set ι'} {f : ι × ι'α} :
Set.PairwiseDisjoint (s ×ˢ t) f (Set.PairwiseDisjoint s fun i => ⨆ (i' : ι') (_ : i' t), f (i, i')) Set.PairwiseDisjoint t fun i' => ⨆ (i : ι) (_ : i s), f (i, i')
theorem Set.biUnion_diff_biUnion_eq {α : Type u_1} {ι : Type u_4} {s : Set ι} {t : Set ι} {f : ιSet α} (h : Set.PairwiseDisjoint (s t) f) :
(⋃ (i : ι) (_ : i s), f i) \ ⋃ (i : ι) (_ : i t), f i = ⋃ (i : ι) (_ : i s \ t), f i
noncomputable def Set.biUnionEqSigmaOfDisjoint {α : Type u_1} {ι : Type u_4} {s : Set ι} {f : ιSet α} (h : Set.PairwiseDisjoint s f) :
↑(⋃ (i : ι) (_ : i s), f i) (i : s) × ↑(f i)

Equivalence between a disjoint bounded union and a dependent sum.

Equations
Instances For
    theorem Set.PairwiseDisjoint.subset_of_biUnion_subset_biUnion {α : Type u_1} {ι : Type u_4} {f : ιSet α} {s : Set ι} {t : Set ι} (h₀ : Set.PairwiseDisjoint (s t) f) (h₁ : ∀ (i : ι), i sSet.Nonempty (f i)) (h : ⋃ (i : ι) (_ : i s), f i ⋃ (i : ι) (_ : i t), f i) :
    s t
    theorem Pairwise.subset_of_biUnion_subset_biUnion {α : Type u_1} {ι : Type u_4} {f : ιSet α} {s : Set ι} {t : Set ι} (h₀ : Pairwise (Disjoint on f)) (h₁ : ∀ (i : ι), i sSet.Nonempty (f i)) (h : ⋃ (i : ι) (_ : i s), f i ⋃ (i : ι) (_ : i t), f i) :
    s t
    theorem Pairwise.biUnion_injective {α : Type u_1} {ι : Type u_4} {f : ιSet α} (h₀ : Pairwise (Disjoint on f)) (h₁ : ∀ (i : ι), Set.Nonempty (f i)) :
    Function.Injective fun s => ⋃ (i : ι) (_ : i s), f i