Documentation

Mathlib.Data.Nat.Factorization.Basic

Prime factorizations #

n.factorization is the finitely supported function ℕ →₀ ℕ mapping each prime factor of n to its multiplicity in n. For example, since 2000 = 2^4 * 5^3,

TODO #

n.factorization is the finitely supported function ℕ →₀ ℕ mapping each prime factor of n to its multiplicity in n.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Nat.factorization_def (n : ) {p : } (pp : Nat.Prime p) :
    @[simp]

    We can write both n.factorization p and n.factors.count p to represent the power of p in the factorization of n: we declare the former to be the simp-normal form.

    theorem Nat.factorization_eq_factors_multiset (n : ) :
    Nat.factorization n = Multiset.toFinsupp ↑(Nat.factors n)
    theorem Nat.multiplicity_eq_factorization {n : } {p : } (pp : Nat.Prime p) (hn : n 0) :
    multiplicity p n = ↑(↑(Nat.factorization n) p)

    Basic facts about factorization #

    @[simp]
    theorem Nat.factorization_prod_pow_eq_self {n : } (hn : n 0) :
    (Finsupp.prod (Nat.factorization n) fun x x_1 => x ^ x_1) = n
    theorem Nat.eq_of_factorization_eq {a : } {b : } (ha : a 0) (hb : b 0) (h : ∀ (p : ), ↑(Nat.factorization a) p = ↑(Nat.factorization b) p) :
    a = b

    Every nonzero natural number has a unique prime factorization

    @[simp]

    The support of n.factorization is exactly n.factors.toFinset

    theorem Nat.prime_of_mem_factorization {n : } {p : } (hp : p (Nat.factorization n).support) :
    theorem Nat.pos_of_mem_factorization {n : } {p : } (hp : p (Nat.factorization n).support) :
    0 < p
    theorem Nat.le_of_mem_factorization {n : } {p : } (h : p (Nat.factorization n).support) :
    p n

    Lemmas characterising when n.factorization p = 0 #

    @[simp]
    theorem Nat.factorization_eq_zero_of_lt {n : } {p : } (h : n < p) :
    ↑(Nat.factorization n) p = 0
    @[simp]
    @[simp]
    theorem Nat.dvd_of_factorization_pos {n : } {p : } (hn : ↑(Nat.factorization n) p 0) :
    p n
    theorem Nat.Prime.factorization_pos_of_dvd {n : } {p : } (hp : Nat.Prime p) (hn : n 0) (h : p n) :
    0 < ↑(Nat.factorization n) p
    theorem Nat.factorization_eq_zero_of_remainder {p : } {r : } (i : ) (hr : ¬p r) :
    ↑(Nat.factorization (p * i + r)) p = 0
    theorem Nat.factorization_eq_zero_iff_remainder {p : } {r : } (i : ) (pp : Nat.Prime p) (hr0 : r 0) :
    ¬p r ↑(Nat.factorization (p * i + r)) p = 0

    The only numbers with empty prime factorization are 0 and 1

    Lemmas about factorizations of products and powers #

    @[simp]
    theorem Nat.factorization_mul {a : } {b : } (ha : a 0) (hb : b 0) :

    For nonzero a and b, the power of p in a * b is the sum of the powers in a and b

    theorem Nat.factorization_mul_support {a : } {b : } (ha : a 0) (hb : b 0) :
    (Nat.factorization (a * b)).support = (Nat.factorization a).support (Nat.factorization b).support
    theorem Nat.prod_factorization_eq_prod_factors {n : } {β : Type u_1} [CommMonoid β] (f : β) :
    (Finsupp.prod (Nat.factorization n) fun p x => f p) = Finset.prod (List.toFinset (Nat.factors n)) fun p => f p

    If a product over n.factorization doesn't use the multiplicities of the prime factors then it's equal to the corresponding product over n.factors.toFinset

    theorem Nat.factorization_prod {α : Type u_1} {S : Finset α} {g : α} (hS : ∀ (x : α), x Sg x 0) :

    For any p : ℕ and any function g : α → ℕ that's non-zero on S : Finset α, the power of p in S.prod g equals the sum over x ∈ S of the powers of p in g x. Generalises factorization_mul, which is the special case where S.card = 2 and g = id.

    @[simp]

    For any p, the power of p in n^k is k times the power in n

    Lemmas about factorizations of primes and prime powers #

    @[simp]
    theorem Nat.Prime.factorization {p : } (hp : Nat.Prime p) :
    Nat.factorization p = fun₀ | p => 1

    The only prime factor of prime p is p itself, with multiplicity 1

    @[simp]
    theorem Nat.Prime.factorization_self {p : } (hp : Nat.Prime p) :
    ↑(Nat.factorization p) p = 1

    The multiplicity of prime p in p is 1

    theorem Nat.Prime.factorization_pow {p : } {k : } (hp : Nat.Prime p) :
    Nat.factorization (p ^ k) = fun₀ | p => k

    For prime p the only prime factor of p^k is p with multiplicity k

    theorem Nat.eq_pow_of_factorization_eq_single {n : } {p : } {k : } (hn : n 0) (h : Nat.factorization n = fun₀ | p => k) :
    n = p ^ k

    If the factorization of n contains just one number p then n is a power of p

    theorem Nat.Prime.eq_of_factorization_pos {p : } {q : } (hp : Nat.Prime p) (h : ↑(Nat.factorization p) q 0) :
    p = q

    The only prime factor of prime p is p itself.

    Equivalence between ℕ+ and ℕ →₀ ℕ with support in the primes. #

    theorem Nat.prod_pow_factorization_eq_self {f : →₀ } (hf : ∀ (p : ), p f.supportNat.Prime p) :
    Nat.factorization (Finsupp.prod f fun x x_1 => x ^ x_1) = f

    Any Finsupp f : ℕ →₀ ℕ whose support is in the primes is equal to the factorization of the product ∏ (a : ℕ) in f.support, a ^ f a.

    theorem Nat.eq_factorization_iff {n : } {f : →₀ } (hn : n 0) (hf : ∀ (p : ), p f.supportNat.Prime p) :
    f = Nat.factorization n (Finsupp.prod f fun x x_1 => x ^ x_1) = n
    def Nat.factorizationEquiv :
    ℕ+ {f | ∀ (p : ), p f.supportNat.Prime p}

    The equiv between ℕ+ and ℕ →₀ ℕ with support in the primes.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Nat.factorizationEquiv_inv_apply {f : →₀ } (hf : ∀ (p : ), p f.supportNat.Prime p) :
      ↑(Nat.factorizationEquiv.symm { val := f, property := hf }) = Finsupp.prod f fun x x_1 => x ^ x_1

      Generalisation of the "even part" and "odd part" of a natural number #

      We introduce the notations ord_proj[p] n for the largest power of the prime p that divides n and ord_compl[p] n for the complementary part. The ord naming comes from the $p$-adic order/valuation of a number, and proj and compl are for the projection and complementary projection. The term n.factorization p is the $p$-adic order itself. For example, ord_proj[2] n is the even part of n and ord_compl[2] n is the odd part.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Nat.ord_proj_of_not_prime (n : ) (p : ) (hp : ¬Nat.Prime p) :
          p ^ ↑(Nat.factorization n) p = 1
          @[simp]
          theorem Nat.ord_compl_of_not_prime (n : ) (p : ) (hp : ¬Nat.Prime p) :
          n / p ^ ↑(Nat.factorization n) p = n
          theorem Nat.ord_proj_dvd (n : ) (p : ) :
          p ^ ↑(Nat.factorization n) p n
          theorem Nat.ord_compl_dvd (n : ) (p : ) :
          n / p ^ ↑(Nat.factorization n) p n
          theorem Nat.ord_proj_pos (n : ) (p : ) :
          0 < p ^ ↑(Nat.factorization n) p
          theorem Nat.ord_proj_le {n : } (p : ) (hn : n 0) :
          p ^ ↑(Nat.factorization n) p n
          theorem Nat.ord_compl_pos {n : } (p : ) (hn : n 0) :
          0 < n / p ^ ↑(Nat.factorization n) p
          theorem Nat.ord_compl_le (n : ) (p : ) :
          n / p ^ ↑(Nat.factorization n) p n
          theorem Nat.ord_proj_mul_ord_compl_eq_self (n : ) (p : ) :
          p ^ ↑(Nat.factorization n) p * (n / p ^ ↑(Nat.factorization n) p) = n
          theorem Nat.ord_proj_mul {a : } {b : } (p : ) (ha : a 0) (hb : b 0) :
          p ^ ↑(Nat.factorization (a * b)) p = p ^ ↑(Nat.factorization a) p * p ^ ↑(Nat.factorization b) p
          theorem Nat.ord_compl_mul (a : ) (b : ) (p : ) :
          a * b / p ^ ↑(Nat.factorization (a * b)) p = a / p ^ ↑(Nat.factorization a) p * (b / p ^ ↑(Nat.factorization b) p)

          Factorization and divisibility #

          theorem Nat.dvd_of_mem_factorization {n : } {p : } (h : p (Nat.factorization n).support) :
          p n
          theorem Nat.factorization_lt {n : } (p : ) (hn : n 0) :
          ↑(Nat.factorization n) p < n

          A crude upper bound on n.factorization p

          theorem Nat.factorization_le_of_le_pow {n : } {p : } {b : } (hb : n p ^ b) :

          An upper bound on n.factorization p

          theorem Nat.factorization_le_iff_dvd {d : } {n : } (hd : d 0) (hn : n 0) :
          theorem Nat.factorization_prime_le_iff_dvd {d : } {n : } (hd : d 0) (hn : n 0) :
          (∀ (p : ), Nat.Prime p↑(Nat.factorization d) p ↑(Nat.factorization n) p) d n
          theorem Nat.pow_succ_factorization_not_dvd {n : } {p : } (hn : n 0) (hp : Nat.Prime p) :
          ¬p ^ (↑(Nat.factorization n) p + 1) n
          theorem Nat.Prime.pow_dvd_iff_le_factorization {p : } {k : } {n : } (pp : Nat.Prime p) (hn : n 0) :
          p ^ k n k ↑(Nat.factorization n) p
          theorem Nat.Prime.pow_dvd_iff_dvd_ord_proj {p : } {k : } {n : } (pp : Nat.Prime p) (hn : n 0) :
          p ^ k n p ^ k p ^ ↑(Nat.factorization n) p
          theorem Nat.Prime.dvd_iff_one_le_factorization {p : } {n : } (pp : Nat.Prime p) (hn : n 0) :
          p n 1 ↑(Nat.factorization n) p
          theorem Nat.exists_factorization_lt_of_lt {a : } {b : } (ha : a 0) (hab : a < b) :
          p, ↑(Nat.factorization a) p < ↑(Nat.factorization b) p
          theorem Nat.dvd_ord_proj_of_dvd {n : } {p : } (hn : n 0) (pp : Nat.Prime p) (h : p n) :
          p p ^ ↑(Nat.factorization n) p
          theorem Nat.not_dvd_ord_compl {n : } {p : } (hp : Nat.Prime p) (hn : n 0) :
          ¬p n / p ^ ↑(Nat.factorization n) p
          theorem Nat.coprime_ord_compl {n : } {p : } (hp : Nat.Prime p) (hn : n 0) :
          Nat.Coprime p (n / p ^ ↑(Nat.factorization n) p)
          theorem Nat.dvd_ord_compl_of_dvd_not_dvd {p : } {d : } {n : } (hdn : d n) (hpd : ¬p d) :
          d n / p ^ ↑(Nat.factorization n) p
          theorem Nat.exists_eq_pow_mul_and_not_dvd {n : } (hn : n 0) (p : ) (hp : p 1) :
          e n', ¬p n' n = p ^ e * n'

          If n is a nonzero natural number and p ≠ 1, then there are natural numbers e and n' such that n' is not divisible by p and n = p^e * n'.

          theorem Nat.ord_proj_dvd_ord_proj_of_dvd {a : } {b : } (hb0 : b 0) (hab : a b) (p : ) :
          p ^ ↑(Nat.factorization a) p p ^ ↑(Nat.factorization b) p
          theorem Nat.ord_proj_dvd_ord_proj_iff_dvd {a : } {b : } (ha0 : a 0) (hb0 : b 0) :
          (∀ (p : ), p ^ ↑(Nat.factorization a) p p ^ ↑(Nat.factorization b) p) a b
          theorem Nat.ord_compl_dvd_ord_compl_of_dvd {a : } {b : } (hab : a b) (p : ) :
          a / p ^ ↑(Nat.factorization a) p b / p ^ ↑(Nat.factorization b) p
          theorem Nat.ord_compl_dvd_ord_compl_iff_dvd (a : ) (b : ) :
          (∀ (p : ), a / p ^ ↑(Nat.factorization a) p b / p ^ ↑(Nat.factorization b) p) a b
          theorem Nat.dvd_iff_prime_pow_dvd_dvd (n : ) (d : ) :
          d n ∀ (p k : ), Nat.Prime pp ^ k dp ^ k n
          theorem Nat.factorization_gcd {a : } {b : } (ha_pos : a 0) (hb_pos : b 0) :
          theorem Nat.setOf_pow_dvd_eq_Icc_factorization {n : } {p : } (pp : Nat.Prime p) (hn : n 0) :
          {i | i 0 p ^ i n} = Set.Icc 1 (↑(Nat.factorization n) p)
          theorem Nat.Icc_factorization_eq_pow_dvd (n : ) {p : } (pp : Nat.Prime p) :
          Finset.Icc 1 (↑(Nat.factorization n) p) = Finset.filter (fun i => p ^ i n) (Finset.Ico 1 n)

          The set of positive powers of prime p that divide n is exactly the set of positive natural numbers up to n.factorization p.

          theorem Nat.factorization_eq_card_pow_dvd (n : ) {p : } (pp : Nat.Prime p) :
          ↑(Nat.factorization n) p = Finset.card (Finset.filter (fun i => p ^ i n) (Finset.Ico 1 n))
          theorem Nat.Ico_filter_pow_dvd_eq {n : } {p : } {b : } (pp : Nat.Prime p) (hn : n 0) (hb : n p ^ b) :
          Finset.filter (fun i => p ^ i n) (Finset.Ico 1 n) = Finset.filter (fun i => p ^ i n) (Finset.Icc 1 b)

          Factorization and coprimes #

          theorem Nat.factorization_mul_apply_of_coprime {p : } {a : } {b : } (hab : Nat.Coprime a b) :
          ↑(Nat.factorization (a * b)) p = ↑(Nat.factorization a) p + ↑(Nat.factorization b) p

          For coprime a and b, the power of p in a * b is the sum of the powers in a and b

          For coprime a and b, the power of p in a * b is the sum of the powers in a and b

          theorem Nat.factorization_eq_of_coprime_left {p : } {a : } {b : } (hab : Nat.Coprime a b) (hpa : p Nat.factors a) :
          ↑(Nat.factorization (a * b)) p = ↑(Nat.factorization a) p

          If p is a prime factor of a then the power of p in a is the same that in a * b, for any b coprime to a.

          theorem Nat.factorization_eq_of_coprime_right {p : } {a : } {b : } (hab : Nat.Coprime a b) (hpb : p Nat.factors b) :
          ↑(Nat.factorization (a * b)) p = ↑(Nat.factorization b) p

          If p is a prime factor of b then the power of p in b is the same that in a * b, for any a coprime to b.

          The prime factorizations of coprime a and b are disjoint

          theorem Nat.factorization_mul_support_of_coprime {a : } {b : } (hab : Nat.Coprime a b) :
          (Nat.factorization (a * b)).support = (Nat.factorization a).support (Nat.factorization b).support

          For coprime a and b the prime factorization a * b is the union of those of a and b

          Induction principles involving factorizations #

          def Nat.recOnPrimePow {P : Sort u_1} (h0 : P 0) (h1 : P 1) (h : (a p n : ) → Nat.Prime p¬p a0 < nP aP (p ^ n * a)) (a : ) :
          P a

          Given P 0, P 1 and a way to extend P a to P (p ^ n * a) for prime p not dividing a, we can define P for all natural numbers.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def Nat.recOnPosPrimePosCoprime {P : Sort u_1} (hp : (p n : ) → Nat.Prime p0 < nP (p ^ n)) (h0 : P 0) (h1 : P 1) (h : (a b : ) → 1 < a1 < bNat.Coprime a bP aP bP (a * b)) (a : ) :
            P a

            Given P 0, P 1, and P (p ^ n) for positive prime powers, and a way to extend P a and P b to P (a * b) when a, b are positive coprime, we can define P for all natural numbers.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def Nat.recOnPrimeCoprime {P : Sort u_1} (h0 : P 0) (hp : (p n : ) → Nat.Prime pP (p ^ n)) (h : (a b : ) → 1 < a1 < bNat.Coprime a bP aP bP (a * b)) (a : ) :
              P a

              Given P 0, P (p ^ n) for all prime powers, and a way to extend P a and P b to P (a * b) when a, b are positive coprime, we can define P for all natural numbers.

              Equations
              Instances For
                def Nat.recOnMul {P : Sort u_1} (h0 : P 0) (h1 : P 1) (hp : (p : ) → Nat.Prime pP p) (h : (a b : ) → P aP bP (a * b)) (a : ) :
                P a

                Given P 0, P 1, P p for all primes, and a way to extend P a and P b to P (a * b), we can define P for all natural numbers.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem Nat.multiplicative_factorization {β : Type u_1} [CommMonoid β] (f : β) (h_mult : ∀ (x y : ), Nat.Coprime x yf (x * y) = f x * f y) (hf : f 1 = 1) {n : } :
                  n 0f n = Finsupp.prod (Nat.factorization n) fun p k => f (p ^ k)

                  For any multiplicative function f with f 1 = 1 and any n ≠ 0, we can evaluate f n by evaluating f at p ^ k over the factorization of n

                  theorem Nat.multiplicative_factorization' {β : Type u_1} [CommMonoid β] (f : β) (h_mult : ∀ (x y : ), Nat.Coprime x yf (x * y) = f x * f y) (hf0 : f 0 = 1) (hf1 : f 1 = 1) {n : } :
                  f n = Finsupp.prod (Nat.factorization n) fun p k => f (p ^ k)

                  For any multiplicative function f with f 1 = 1 and f 0 = 1, we can evaluate f n by evaluating f at p ^ k over the factorization of n

                  theorem Nat.eq_iff_prime_padicValNat_eq (a : ) (b : ) (ha : a 0) (hb : b 0) :
                  a = b ∀ (p : ), Nat.Prime ppadicValNat p a = padicValNat p b

                  Two positive naturals are equal if their prime padic valuations are equal

                  theorem Nat.prod_pow_prime_padicValNat (n : ) (hn : n 0) (m : ) (pr : n < m) :

                  Lemmas about factorizations of particular functions #

                  theorem Nat.card_multiples (n : ) (p : ) :
                  Finset.card (Finset.filter (fun e => p e + 1) (Finset.range n)) = n / p

                  Exactly n / p naturals in [1, n] are multiples of p.

                  theorem Nat.Ioc_filter_dvd_card_eq_div (n : ) (p : ) :
                  Finset.card (Finset.filter (fun x => p x) (Finset.Ioc 0 n)) = n / p

                  Exactly n / p naturals in (0, n] are multiples of p.