Finsets in Fin n #
A few constructions for Finsets in Fin n.
Main declarations #
Finset.attachFin: Turns a Finset of naturals strictly less thanninto aFinset (Fin n).
Given a Finset s of ℕ contained in {0,..., n-1}, the corresponding Finset in Fin n
is s.attachFin h where h is a proof that all elements of s are less than n.
Equations
- Finset.attachFin s h = { val := Multiset.pmap (fun a ha => { val := a, isLt := ha }) s.val h, nodup := (_ : Multiset.Nodup (Multiset.pmap (fun a ha => { val := a, isLt := ha }) s.val h)) }
Instances For
@[simp]
theorem
Finset.card_attachFin
{n : ℕ}
(s : Finset ℕ)
(h : ∀ (m : ℕ), m ∈ s → m < n)
:
Finset.card (Finset.attachFin s h) = Finset.card s