Natural transformations #
Defines natural transformations between functors.
A natural transformation α : NatTrans F G consists of morphisms α.app X : F.obj X ⟶ G.obj X,
and the naturality squares α.naturality f : F.map f ≫ α.app Y = α.app X ≫ G.map f,
where f : X ⟶ Y.
Note that we make NatTrans.naturality a simp lemma, with the preferred simp normal form
pushing components of natural transformations to the left.
See also CategoryTheory.FunctorCat, where we provide the category structure on
functors and natural transformations.
Introduces notations
τ.app Xfor the components of natural transformations,F ⟶ Gfor the type of natural transformations between functorsFandG(this and the next requireCategoryTheory.FunctorCat),σ ≫ τfor vertical compositions, andσ ◫ τfor horizontal compositions.
- app : (X : C) → F.obj X ⟶ G.obj X
The component of a natural transformation.
- naturality : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), CategoryTheory.CategoryStruct.comp (F.map f) (s.app Y) = CategoryTheory.CategoryStruct.comp (s.app X) (G.map f)
The naturality square for a given morphism.
NatTrans F G represents a natural transformation between functors F and G.
The field app provides the components of the natural transformation.
Naturality is expressed by α.naturality.
Instances For
NatTrans.id F is the identity natural transformation on a functor F.
Equations
- CategoryTheory.NatTrans.id F = CategoryTheory.NatTrans.mk fun X => CategoryTheory.CategoryStruct.id (F.obj X)
Instances For
Equations
- CategoryTheory.NatTrans.instInhabitedNatTrans F = { default := CategoryTheory.NatTrans.id F }
vcomp α β is the vertical compositions of natural transformations.
Equations
- CategoryTheory.NatTrans.vcomp α β = CategoryTheory.NatTrans.mk fun X => CategoryTheory.CategoryStruct.comp (α.app X) (β.app X)