Power function on ℂ
#
We construct the power functions x ^ y
, where x
and y
are complex numbers.
The complex power function x ^ y
, given by x ^ y = exp(y log x)
(where log
is the
principal determination of the logarithm), unless x = 0
where one sets 0 ^ 0 = 1
and
0 ^ y = 0
for y ≠ 0
.
Equations
- Complex.cpow x y = if x = 0 then if y = 0 then 1 else 0 else Complex.exp (Complex.log x * y)
Instances For
Equations
- Complex.instPowComplex = { pow := Complex.cpow }
theorem
Complex.cpow_def
(x : ℂ)
(y : ℂ)
:
x ^ y = if x = 0 then if y = 0 then 1 else 0 else Complex.exp (Complex.log x * y)
theorem
Complex.cpow_def_of_ne_zero
{x : ℂ}
(hx : x ≠ 0)
(y : ℂ)
:
x ^ y = Complex.exp (Complex.log x * y)
theorem
Complex.inv_cpow_eq_ite
(x : ℂ)
(n : ℂ)
:
x⁻¹ ^ n = if Complex.arg x = Real.pi then ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)⁻¹ else (x ^ n)⁻¹
theorem
Complex.inv_cpow_eq_ite'
(x : ℂ)
(n : ℂ)
:
(x ^ n)⁻¹ = if Complex.arg x = Real.pi then ↑(starRingEnd ℂ) (x⁻¹ ^ ↑(starRingEnd ℂ) n) else x⁻¹ ^ n
Complex.inv_cpow_eq_ite
with the ite
on the other side.
theorem
Complex.conj_cpow_eq_ite
(x : ℂ)
(n : ℂ)
:
↑(starRingEnd ℂ) x ^ n = if Complex.arg x = Real.pi then x ^ n else ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)
theorem
Complex.conj_cpow
(x : ℂ)
(n : ℂ)
(hx : Complex.arg x ≠ Real.pi)
:
↑(starRingEnd ℂ) x ^ n = ↑(starRingEnd ℂ) (x ^ ↑(starRingEnd ℂ) n)
theorem
Complex.cpow_conj
(x : ℂ)
(n : ℂ)
(hx : Complex.arg x ≠ Real.pi)
:
x ^ ↑(starRingEnd ℂ) n = ↑(starRingEnd ((fun x => ℂ) x)) (↑(starRingEnd ℂ) x ^ n)