Derivative and series expansion of real logarithm #
In this file we prove that Real.log
is infinitely smooth at all nonzero x : ℝ
. We also prove
that the series ∑' n : ℕ, x ^ (n + 1) / (n + 1)
converges to (-Real.log (1 - x))
for all
x : ℝ
, |x| < 1
.
Tags #
logarithm, derivative
theorem
HasDerivWithinAt.log
{f : ℝ → ℝ}
{x : ℝ}
{f' : ℝ}
{s : Set ℝ}
(hf : HasDerivWithinAt f f' s x)
(hx : f x ≠ 0)
:
HasDerivWithinAt (fun y => Real.log (f y)) (f' / f x) s x
theorem
HasDerivAt.log
{f : ℝ → ℝ}
{x : ℝ}
{f' : ℝ}
(hf : HasDerivAt f f' x)
(hx : f x ≠ 0)
:
HasDerivAt (fun y => Real.log (f y)) (f' / f x) x
theorem
HasStrictDerivAt.log
{f : ℝ → ℝ}
{x : ℝ}
{f' : ℝ}
(hf : HasStrictDerivAt f f' x)
(hx : f x ≠ 0)
:
HasStrictDerivAt (fun y => Real.log (f y)) (f' / f x) x
theorem
derivWithin.log
{f : ℝ → ℝ}
{x : ℝ}
{s : Set ℝ}
(hf : DifferentiableWithinAt ℝ f s x)
(hx : f x ≠ 0)
(hxs : UniqueDiffWithinAt ℝ s x)
:
derivWithin (fun x => Real.log (f x)) s x = derivWithin f s x / f x
theorem
HasFDerivWithinAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
{s : Set E}
(hf : HasFDerivWithinAt f f' s x)
(hx : f x ≠ 0)
:
HasFDerivWithinAt (fun x => Real.log (f x)) ((f x)⁻¹ • f') s x
theorem
HasFDerivAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : HasFDerivAt f f' x)
(hx : f x ≠ 0)
:
HasFDerivAt (fun x => Real.log (f x)) ((f x)⁻¹ • f') x
theorem
HasStrictFDerivAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : HasStrictFDerivAt f f' x)
(hx : f x ≠ 0)
:
HasStrictFDerivAt (fun x => Real.log (f x)) ((f x)⁻¹ • f') x
theorem
DifferentiableWithinAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt ℝ f s x)
(hx : f x ≠ 0)
:
DifferentiableWithinAt ℝ (fun x => Real.log (f x)) s x
@[simp]
theorem
DifferentiableAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
(hx : f x ≠ 0)
:
DifferentiableAt ℝ (fun x => Real.log (f x)) x
theorem
ContDiffAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{n : ℕ∞}
(hf : ContDiffAt ℝ n f x)
(hx : f x ≠ 0)
:
ContDiffAt ℝ n (fun x => Real.log (f x)) x
theorem
ContDiffWithinAt.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{s : Set E}
{n : ℕ∞}
(hf : ContDiffWithinAt ℝ n f s x)
(hx : f x ≠ 0)
:
ContDiffWithinAt ℝ n (fun x => Real.log (f x)) s x
theorem
ContDiffOn.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
{n : ℕ∞}
(hf : ContDiffOn ℝ n f s)
(hs : ∀ (x : E), x ∈ s → f x ≠ 0)
:
ContDiffOn ℝ n (fun x => Real.log (f x)) s
theorem
ContDiff.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{n : ℕ∞}
(hf : ContDiff ℝ n f)
(h : ∀ (x : E), f x ≠ 0)
:
theorem
DifferentiableOn.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{s : Set E}
(hf : DifferentiableOn ℝ f s)
(hx : ∀ (x : E), x ∈ s → f x ≠ 0)
:
DifferentiableOn ℝ (fun x => Real.log (f x)) s
@[simp]
theorem
Differentiable.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
(hf : Differentiable ℝ f)
(hx : ∀ (x : E), f x ≠ 0)
:
Differentiable ℝ fun x => Real.log (f x)
theorem
fderivWithin.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
{s : Set E}
(hf : DifferentiableWithinAt ℝ f s x)
(hx : f x ≠ 0)
(hxs : UniqueDiffWithinAt ℝ s x)
:
fderivWithin ℝ (fun x => Real.log (f x)) s x = (f x)⁻¹ • fderivWithin ℝ f s x
@[simp]
theorem
fderiv.log
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x : E}
(hf : DifferentiableAt ℝ f x)
(hx : f x ≠ 0)
:
The function x * log (1 + t / x)
tends to t
at +∞
.
A crude lemma estimating the difference between log (1-x)
and its Taylor series at 0
,
where the main point of the bound is that it tends to 0
. The goal is to deduce the series
expansion of the logarithm, in hasSum_pow_div_log_of_abs_lt_1
.
Porting note: TODO: use one of generic theorems about Taylor's series to prove this estimate.