Real logarithm base b
#
In this file we define Real.logb
to be the logarithm of a real number in a given base b
. We
define this as the division of the natural logarithms of the argument and the base, so that we have
a globally defined function with logb b 0 = 0
, logb b (-x) = logb b x
logb 0 x = 0
and
logb (-b) x = logb b x
.
We prove some basic properties of this function and its relation to rpow
.
Tags #
logarithm, continuity
theorem
Real.surjOn_logb
{b : ℝ}
(b_pos : 0 < b)
(b_ne_one : b ≠ 1)
:
Set.SurjOn (Real.logb b) (Set.Ioi 0) Set.univ
theorem
Real.surjOn_logb'
{b : ℝ}
(b_pos : 0 < b)
(b_ne_one : b ≠ 1)
:
Set.SurjOn (Real.logb b) (Set.Iio 0) Set.univ
theorem
Real.tendsto_logb_atTop
{b : ℝ}
(hb : 1 < b)
:
Filter.Tendsto (Real.logb b) Filter.atTop Filter.atTop
theorem
Real.strictAntiOn_logb_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1)
:
StrictAntiOn (Real.logb b) (Set.Ioi 0)
theorem
Real.strictMonoOn_logb_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1)
:
StrictMonoOn (Real.logb b) (Set.Iio 0)
theorem
Real.tendsto_logb_atTop_of_base_lt_one
{b : ℝ}
(b_pos : 0 < b)
(b_lt_one : b < 1)
:
Filter.Tendsto (Real.logb b) Filter.atTop Filter.atBot
theorem
Real.logb_prod
{b : ℝ}
{α : Type u_1}
(s : Finset α)
(f : α → ℝ)
(hf : ∀ (x : α), x ∈ s → f x ≠ 0)
:
Real.logb b (Finset.prod s fun i => f i) = Finset.sum s fun i => Real.logb b (f i)