Normed spaces over R or C #
This file is about results on normed spaces over the fields โ
and โ
.
Main definitions #
None.
Main theorems #
ContinuousLinearMap.op_norm_bound_of_ball_bound
: A bound on the norms of values of a linear map in a ball yields a bound on the operator norm.
Notes #
This file exists mainly to avoid importing IsROrC
in the main normed space theory files.
@[simp]
theorem
norm_smul_inv_norm
{๐ : Type u_1}
[IsROrC ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{x : E}
(hx : x โ 0)
:
Lemma to normalize a vector in a normed space E
over either โ
or โ
to unit length.
theorem
norm_smul_inv_norm'
{๐ : Type u_1}
[IsROrC ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{r : โ}
(r_nonneg : 0 โค r)
{x : E}
(hx : x โ 0)
:
Lemma to normalize a vector in a normed space E
over either โ
or โ
to length r
.
theorem
LinearMap.bound_of_sphere_bound
{๐ : Type u_1}
[IsROrC ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{r : โ}
(r_pos : 0 < r)
(c : โ)
(f : E โโ[๐] ๐)
(h : โ (z : E), z โ Metric.sphere 0 r โ โโf zโ โค c)
(z : E)
:
theorem
LinearMap.bound_of_ball_bound'
{๐ : Type u_1}
[IsROrC ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{r : โ}
(r_pos : 0 < r)
(c : โ)
(f : E โโ[๐] ๐)
(h : โ (z : E), z โ Metric.closedBall 0 r โ โโf zโ โค c)
(z : E)
:
LinearMap.bound_of_ball_bound
is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions.
theorem
ContinuousLinearMap.op_norm_bound_of_ball_bound
{๐ : Type u_1}
[IsROrC ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{r : โ}
(r_pos : 0 < r)
(c : โ)
(f : E โL[๐] ๐)
(h : โ (z : E), z โ Metric.closedBall 0 r โ โโf zโ โค c)
:
theorem
NormedSpace.sphere_nonempty_isROrC
(๐ : Type u_1)
[IsROrC ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[Nontrivial E]
{r : โ}
(hr : 0 โค r)
:
Nonempty โ(Metric.sphere 0 r)