Documentation

Mathlib.Analysis.NormedSpace.IsROrC

Normed spaces over R or C #

This file is about results on normed spaces over the fields โ„ and โ„‚.

Main definitions #

None.

Main theorems #

Notes #

This file exists mainly to avoid importing IsROrC in the main normed space theory files.

theorem IsROrC.norm_coe_norm {๐•œ : Type u_1} [IsROrC ๐•œ] {E : Type u_2} [NormedAddCommGroup E] {z : E} :
@[simp]
theorem norm_smul_inv_norm {๐•œ : Type u_1} [IsROrC ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {x : E} (hx : x โ‰  0) :

Lemma to normalize a vector in a normed space E over either โ„‚ or โ„ to unit length.

theorem norm_smul_inv_norm' {๐•œ : Type u_1} [IsROrC ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (r_nonneg : 0 โ‰ค r) {x : E} (hx : x โ‰  0) :

Lemma to normalize a vector in a normed space E over either โ„‚ or โ„ to length r.

theorem LinearMap.bound_of_sphere_bound {๐•œ : Type u_1} [IsROrC ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (r_pos : 0 < r) (c : โ„) (f : E โ†’โ‚—[๐•œ] ๐•œ) (h : โˆ€ (z : E), z โˆˆ Metric.sphere 0 r โ†’ โ€–โ†‘f zโ€– โ‰ค c) (z : E) :
theorem LinearMap.bound_of_ball_bound' {๐•œ : Type u_1} [IsROrC ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (r_pos : 0 < r) (c : โ„) (f : E โ†’โ‚—[๐•œ] ๐•œ) (h : โˆ€ (z : E), z โˆˆ Metric.closedBall 0 r โ†’ โ€–โ†‘f zโ€– โ‰ค c) (z : E) :

LinearMap.bound_of_ball_bound is a version of this over arbitrary nontrivially normed fields. It produces a less precise bound so we keep both versions.

theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {๐•œ : Type u_1} [IsROrC ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {r : โ„} (r_pos : 0 < r) (c : โ„) (f : E โ†’L[๐•œ] ๐•œ) (h : โˆ€ (z : E), z โˆˆ Metric.closedBall 0 r โ†’ โ€–โ†‘f zโ€– โ‰ค c) :
theorem NormedSpace.sphere_nonempty_isROrC (๐•œ : Type u_1) [IsROrC ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [Nontrivial E] {r : โ„} (hr : 0 โ‰ค r) :
Nonempty โ†‘(Metric.sphere 0 r)