Isometries of the Complex Plane #
The lemma linear_isometry_complex
states the classification of isometries in the complex plane.
Specifically, isometries with rotations but without translation.
The proof involves:
- creating a linear isometry
g
with two fixed points,g(0) = 0
,g(1) = 1
- applying
linear_isometry_complex_aux
tog
The proof oflinear_isometry_complex_aux
is separated in the following parts: - show that the real parts match up:
LinearIsometry.re_apply_eq_re
- show that I maps to either I or -I
- every z is a linear combination of a + b * I
References #
@[simp]
theorem
rotation_symm
(a : { x // x ∈ circle })
:
LinearIsometryEquiv.symm (↑rotation a) = ↑rotation a⁻¹
@[simp]
Takes an element of ℂ ≃ₗᵢ[ℝ] ℂ
and checks if it is a rotation, returns an element of the
unit circle.
Equations
- rotationOf e = { val := ↑e 1 / ↑(↑Complex.abs (↑e 1)), property := (_ : ↑e 1 / ↑(↑Complex.abs (↑e 1)) ∈ circle) }
Instances For
theorem
linear_isometry_complex
(f : ℂ ≃ₗᵢ[ℝ] ℂ)
:
∃ a, f = ↑rotation a ∨ f = LinearIsometryEquiv.trans Complex.conjLie (↑rotation a)
theorem
toMatrix_rotation
(a : { x // x ∈ circle })
:
↑(LinearMap.toMatrix Complex.basisOneI Complex.basisOneI) ↑(↑rotation a).toLinearEquiv = ↑(Matrix.planeConformalMatrix (↑a).re (↑a).im (_ : (↑a).re ^ 2 + (↑a).im ^ 2 ≠ 0))
The matrix representation of rotation a
is equal to the conformal matrix
!![re a, -im a; im a, re a]
.