Documentation

Mathlib.Analysis.Calculus.FDeriv.Analytic

Frechet derivatives of analytic functions. #

A function expressible as a power series at a point has a Frechet derivative there. Also the special case in terms of deriv when the domain is 1-dimensional.

theorem HasFPowerSeriesAt.hasStrictFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {f : E β†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
HasStrictFDerivAt f (↑(continuousMultilinearCurryFin1 π•œ E F) (p 1)) x
theorem HasFPowerSeriesAt.hasFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {f : E β†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
HasFDerivAt f (↑(continuousMultilinearCurryFin1 π•œ E F) (p 1)) x
theorem HasFPowerSeriesAt.differentiableAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {f : E β†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
DifferentiableAt π•œ f x
theorem AnalyticAt.differentiableAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} :
AnalyticAt π•œ f x β†’ DifferentiableAt π•œ f x
theorem AnalyticAt.differentiableWithinAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} {s : Set E} (h : AnalyticAt π•œ f x) :
DifferentiableWithinAt π•œ f s x
theorem HasFPowerSeriesAt.fderiv_eq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {f : E β†’ F} {x : E} (h : HasFPowerSeriesAt f p x) :
fderiv π•œ f x = ↑(continuousMultilinearCurryFin1 π•œ E F) (p 1)
theorem HasFPowerSeriesOnBall.differentiableOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {r : ENNReal} {f : E β†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) :
theorem AnalyticOn.differentiableOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} (h : AnalyticOn π•œ f s) :
DifferentiableOn π•œ f s
theorem HasFPowerSeriesOnBall.hasFDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {r : ENNReal} {f : E β†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : ↑‖yβ€–β‚Š < r) :
theorem HasFPowerSeriesOnBall.fderiv_eq {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {r : ENNReal} {f : E β†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : ↑‖yβ€–β‚Š < r) :
fderiv π•œ f (x + y) = ↑(continuousMultilinearCurryFin1 π•œ E F) (FormalMultilinearSeries.changeOrigin p y 1)
theorem HasFPowerSeriesOnBall.fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ E F} {r : ENNReal} {f : E β†’ F} {x : E} [CompleteSpace F] (h : HasFPowerSeriesOnBall f p x r) :

If a function has a power series on a ball, then so does its derivative.

theorem AnalyticOn.fderiv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} [CompleteSpace F] (h : AnalyticOn π•œ f s) :
AnalyticOn π•œ (fderiv π•œ f) s

If a function is analytic on a set s, so is its FrΓ©chet derivative.

theorem AnalyticOn.iteratedFDeriv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) :
AnalyticOn π•œ (iteratedFDeriv π•œ n f) s

If a function is analytic on a set s, so are its successive FrΓ©chet derivative.

theorem AnalyticOn.contDiffOn {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {s : Set E} [CompleteSpace F] (h : AnalyticOn π•œ f s) {n : β„•βˆž} :
ContDiffOn π•œ n f s

An analytic function is infinitely differentiable.

theorem AnalyticAt.contDiffAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : E β†’ F} {x : E} [CompleteSpace F] (h : AnalyticAt π•œ f x) {n : β„•βˆž} :
ContDiffAt π•œ n f x
theorem HasFPowerSeriesAt.hasStrictDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ π•œ F} {f : π•œ β†’ F} {x : π•œ} (h : HasFPowerSeriesAt f p x) :
HasStrictDerivAt f (↑(p 1) fun x => 1) x
theorem HasFPowerSeriesAt.hasDerivAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ π•œ F} {f : π•œ β†’ F} {x : π•œ} (h : HasFPowerSeriesAt f p x) :
HasDerivAt f (↑(p 1) fun x => 1) x
theorem HasFPowerSeriesAt.deriv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {p : FormalMultilinearSeries π•œ π•œ F} {f : π•œ β†’ F} {x : π•œ} (h : HasFPowerSeriesAt f p x) :
deriv f x = ↑(p 1) fun x => 1
theorem AnalyticOn.deriv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} {s : Set π•œ} [CompleteSpace F] (h : AnalyticOn π•œ f s) :
AnalyticOn π•œ (deriv f) s

If a function is analytic on a set s, so is its derivative.

theorem AnalyticOn.iterated_deriv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} {s : Set π•œ} [CompleteSpace F] (h : AnalyticOn π•œ f s) (n : β„•) :
AnalyticOn π•œ (deriv^[n] f) s

If a function is analytic on a set s, so are its successive derivatives.