Derivatives of x ^ m
, m : ℤ
#
In this file we prove theorems about (iterated) derivatives of x ^ m
, m : ℤ
.
For a more detailed overview of one-dimensional derivatives in mathlib, see the module docstring of
analysis/calculus/deriv/basic
.
Keywords #
derivative, power
Derivative of x ↦ x^m
for m : ℤ
#
theorem
hasStrictDerivAt_zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(m : ℤ)
(x : 𝕜)
(h : x ≠ 0 ∨ 0 ≤ m)
:
HasStrictDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
theorem
hasDerivAt_zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(m : ℤ)
(x : 𝕜)
(h : x ≠ 0 ∨ 0 ≤ m)
:
HasDerivAt (fun x => x ^ m) (↑m * x ^ (m - 1)) x
theorem
hasDerivWithinAt_zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(m : ℤ)
(x : 𝕜)
(h : x ≠ 0 ∨ 0 ≤ m)
(s : Set 𝕜)
:
HasDerivWithinAt (fun x => x ^ m) (↑m * x ^ (m - 1)) s x
theorem
differentiableWithinAt_zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{s : Set 𝕜}
(m : ℤ)
(x : 𝕜)
(h : x ≠ 0 ∨ 0 ≤ m)
:
DifferentiableWithinAt 𝕜 (fun x => x ^ m) s x
theorem
differentiableOn_zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(m : ℤ)
(s : Set 𝕜)
(h : ¬0 ∈ s ∨ 0 ≤ m)
:
DifferentiableOn 𝕜 (fun x => x ^ m) s
theorem
derivWithin_zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{s : Set 𝕜}
{m : ℤ}
(hxs : UniqueDiffWithinAt 𝕜 s x)
(h : x ≠ 0 ∨ 0 ≤ m)
:
@[simp]
@[simp]
@[simp]
theorem
DifferentiableWithinAt.zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{E : Type v}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{m : ℤ}
{f : E → 𝕜}
{t : Set E}
{a : E}
(hf : DifferentiableWithinAt 𝕜 f t a)
(h : f a ≠ 0 ∨ 0 ≤ m)
:
DifferentiableWithinAt 𝕜 (fun x => f x ^ m) t a
theorem
DifferentiableAt.zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{E : Type v}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{m : ℤ}
{f : E → 𝕜}
{a : E}
(hf : DifferentiableAt 𝕜 f a)
(h : f a ≠ 0 ∨ 0 ≤ m)
:
DifferentiableAt 𝕜 (fun x => f x ^ m) a
theorem
DifferentiableOn.zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{E : Type v}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{m : ℤ}
{f : E → 𝕜}
{t : Set E}
(hf : DifferentiableOn 𝕜 f t)
(h : (∀ (x : E), x ∈ t → f x ≠ 0) ∨ 0 ≤ m)
:
DifferentiableOn 𝕜 (fun x => f x ^ m) t
theorem
Differentiable.zpow
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{E : Type v}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{m : ℤ}
{f : E → 𝕜}
(hf : Differentiable 𝕜 f)
(h : (∀ (x : E), f x ≠ 0) ∨ 0 ≤ m)
:
Differentiable 𝕜 fun x => f x ^ m