Derivatives of polynomials #
In this file we prove that derivatives of polynomials in the analysis sense agree with their derivatives in the algebraic sense.
For a more detailed overview of one-dimensional derivatives in mathlib, see the module docstring of
analysis/calculus/deriv/basic
.
TODO #
- Add results about multivariable polynomials.
- Generalize some (most?) results to an algebra over the base field.
Keywords #
derivative, polynomial
Derivative of a polynomial #
theorem
Polynomial.hasStrictDerivAt
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(p : Polynomial 𝕜)
(x : 𝕜)
:
HasStrictDerivAt (fun x => Polynomial.eval x p) (Polynomial.eval x (↑Polynomial.derivative p)) x
The derivative (in the analysis sense) of a polynomial p
is given by p.derivative
.
theorem
Polynomial.hasStrictDerivAt_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
(x : 𝕜)
:
HasStrictDerivAt (fun x => ↑(Polynomial.aeval x) q) (↑(Polynomial.aeval x) (↑Polynomial.derivative q)) x
theorem
Polynomial.hasDerivAt
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(p : Polynomial 𝕜)
(x : 𝕜)
:
HasDerivAt (fun x => Polynomial.eval x p) (Polynomial.eval x (↑Polynomial.derivative p)) x
The derivative (in the analysis sense) of a polynomial p
is given by p.derivative
.
theorem
Polynomial.hasDerivAt_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
(x : 𝕜)
:
HasDerivAt (fun x => ↑(Polynomial.aeval x) q) (↑(Polynomial.aeval x) (↑Polynomial.derivative q)) x
theorem
Polynomial.hasDerivWithinAt
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(p : Polynomial 𝕜)
(x : 𝕜)
(s : Set 𝕜)
:
HasDerivWithinAt (fun x => Polynomial.eval x p) (Polynomial.eval x (↑Polynomial.derivative p)) s x
theorem
Polynomial.hasDerivWithinAt_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
(x : 𝕜)
(s : Set 𝕜)
:
HasDerivWithinAt (fun x => ↑(Polynomial.aeval x) q) (↑(Polynomial.aeval x) (↑Polynomial.derivative q)) s x
theorem
Polynomial.differentiableAt
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
(p : Polynomial 𝕜)
:
DifferentiableAt 𝕜 (fun x => Polynomial.eval x p) x
theorem
Polynomial.differentiableAt_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
:
DifferentiableAt 𝕜 (fun x => ↑(Polynomial.aeval x) q) x
theorem
Polynomial.differentiableWithinAt
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{s : Set 𝕜}
(p : Polynomial 𝕜)
:
DifferentiableWithinAt 𝕜 (fun x => Polynomial.eval x p) s x
theorem
Polynomial.differentiableWithinAt_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{s : Set 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
:
DifferentiableWithinAt 𝕜 (fun x => ↑(Polynomial.aeval x) q) s x
theorem
Polynomial.differentiable
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(p : Polynomial 𝕜)
:
Differentiable 𝕜 fun x => Polynomial.eval x p
theorem
Polynomial.differentiable_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
:
Differentiable 𝕜 fun x => ↑(Polynomial.aeval x) q
theorem
Polynomial.differentiableOn
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{s : Set 𝕜}
(p : Polynomial 𝕜)
:
DifferentiableOn 𝕜 (fun x => Polynomial.eval x p) s
theorem
Polynomial.differentiableOn_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{s : Set 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
:
DifferentiableOn 𝕜 (fun x => ↑(Polynomial.aeval x) q) s
@[simp]
theorem
Polynomial.deriv
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
(p : Polynomial 𝕜)
:
deriv (fun x => Polynomial.eval x p) x = Polynomial.eval x (↑Polynomial.derivative p)
@[simp]
theorem
Polynomial.deriv_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
:
deriv (fun x => ↑(Polynomial.aeval x) q) x = ↑(Polynomial.aeval x) (↑Polynomial.derivative q)
theorem
Polynomial.derivWithin
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{s : Set 𝕜}
(p : Polynomial 𝕜)
(hxs : UniqueDiffWithinAt 𝕜 s x)
:
derivWithin (fun x => Polynomial.eval x p) s x = Polynomial.eval x (↑Polynomial.derivative p)
theorem
Polynomial.derivWithin_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{s : Set 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
(hxs : UniqueDiffWithinAt 𝕜 s x)
:
derivWithin (fun x => ↑(Polynomial.aeval x) q) s x = ↑(Polynomial.aeval x) (↑Polynomial.derivative q)
theorem
Polynomial.hasFDerivAt
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
(p : Polynomial 𝕜)
(x : 𝕜)
:
HasFDerivAt (fun x => Polynomial.eval x p)
(ContinuousLinearMap.smulRight 1 (Polynomial.eval x (↑Polynomial.derivative p))) x
theorem
Polynomial.hasFDerivAt_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
(x : 𝕜)
:
HasFDerivAt (fun x => ↑(Polynomial.aeval x) q)
(ContinuousLinearMap.smulRight 1 (↑(Polynomial.aeval x) (↑Polynomial.derivative q))) x
theorem
Polynomial.hasFDerivWithinAt
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{s : Set 𝕜}
(p : Polynomial 𝕜)
(x : 𝕜)
:
HasFDerivWithinAt (fun x => Polynomial.eval x p)
(ContinuousLinearMap.smulRight 1 (Polynomial.eval x (↑Polynomial.derivative p))) s x
theorem
Polynomial.hasFDerivWithinAt_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{s : Set 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
(x : 𝕜)
:
HasFDerivWithinAt (fun x => ↑(Polynomial.aeval x) q)
(ContinuousLinearMap.smulRight 1 (↑(Polynomial.aeval x) (↑Polynomial.derivative q))) s x
@[simp]
theorem
Polynomial.fderiv
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
(p : Polynomial 𝕜)
:
fderiv 𝕜 (fun x => Polynomial.eval x p) x = ContinuousLinearMap.smulRight 1 (Polynomial.eval x (↑Polynomial.derivative p))
@[simp]
theorem
Polynomial.fderiv_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
:
fderiv 𝕜 (fun x => ↑(Polynomial.aeval x) q) x = ContinuousLinearMap.smulRight 1 (↑(Polynomial.aeval x) (↑Polynomial.derivative q))
theorem
Polynomial.fderivWithin
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{s : Set 𝕜}
(p : Polynomial 𝕜)
(hxs : UniqueDiffWithinAt 𝕜 s x)
:
fderivWithin 𝕜 (fun x => Polynomial.eval x p) s x = ContinuousLinearMap.smulRight 1 (Polynomial.eval x (↑Polynomial.derivative p))
theorem
Polynomial.fderivWithin_aeval
{𝕜 : Type u}
[NontriviallyNormedField 𝕜]
{x : 𝕜}
{s : Set 𝕜}
{R : Type u_1}
[CommSemiring R]
[Algebra R 𝕜]
(q : Polynomial R)
(hxs : UniqueDiffWithinAt 𝕜 s x)
:
fderivWithin 𝕜 (fun x => ↑(Polynomial.aeval x) q) s x = ContinuousLinearMap.smulRight 1 (↑(Polynomial.aeval x) (↑Polynomial.derivative q))