Documentation

Mathlib.Analysis.BoxIntegral.Box.SubboxInduction

Induction on subboxes #

In this file we prove the following induction principle for BoxIntegral.Box, see BoxIntegral.Box.subbox_induction_on. Let p be a predicate on BoxIntegral.Box ι, let I be a box. Suppose that the following two properties hold true.

Then p I is true.

Tags #

rectangular box, induction

For a box I, the hyperplanes passing through its center split I into 2 ^ card ι boxes. BoxIntegral.Box.splitCenterBox I s is one of these boxes. See also BoxIntegral.Partition.splitCenter for the corresponding BoxIntegral.Partition.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem BoxIntegral.Box.mem_splitCenterBox {ι : Type u_1} {I : BoxIntegral.Box ι} {s : Set ι} {y : ι} :
    @[simp]
    theorem BoxIntegral.Box.exists_mem_splitCenterBox {ι : Type u_1} {I : BoxIntegral.Box ι} {x : ι} :
    @[simp]
    theorem BoxIntegral.Box.subbox_induction_on' {ι : Type u_1} {p : BoxIntegral.Box ιProp} (I : BoxIntegral.Box ι) (H_ind : (J : BoxIntegral.Box ι) → J I((s : Set ι) → p (BoxIntegral.Box.splitCenterBox J s)) → p J) (H_nhds : ∀ (z : ι), z BoxIntegral.Box.Icc IU, U nhdsWithin z (BoxIntegral.Box.Icc I) ((J : BoxIntegral.Box ι) → J I(m : ) → z BoxIntegral.Box.Icc JBoxIntegral.Box.Icc J U(∀ (i : ι), BoxIntegral.Box.upper J i - BoxIntegral.Box.lower J i = (BoxIntegral.Box.upper I i - BoxIntegral.Box.lower I i) / 2 ^ m) → p J)) :
    p I

    Let p be a predicate on Box ι, let I be a box. Suppose that the following two properties hold true.

    • H_ind : Consider a smaller box J ≤ I. The hyperplanes passing through the center of J split it into 2 ^ n boxes. If p holds true on each of these boxes, then it true on J.

    • H_nhds : For each z in the closed box I.Icc there exists a neighborhood U of z within I.Icc such that for every box J ≤ I such that z ∈ J.Icc ⊆ U, if J is homothetic to I with a coefficient of the form 1 / 2 ^ m, then p is true on J.

    Then p I is true. See also BoxIntegral.Box.subbox_induction_on for a version using BoxIntegral.Prepartition.splitCenter instead of BoxIntegral.Box.splitCenterBox.

    The proof still works if we assume H_ind only for subboxes J ≤ I that are homothetic to I with a coefficient of the form 2⁻ᵐ but we do not need this generalization yet.