Documentation

Mathlib.Algebra.Group.Commute.Units

Lemmas about commuting pairs of elements involving units. #

theorem AddCommute.addUnits_neg_right {M : Type u_2} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute a uAddCommute a ↑(-u)
theorem Commute.units_inv_right {M : Type u_2} [Monoid M] {a : M} {u : Mˣ} :
Commute a uCommute a u⁻¹
@[simp]
theorem AddCommute.addUnits_neg_right_iff {M : Type u_2} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute a ↑(-u) AddCommute a u
@[simp]
theorem Commute.units_inv_right_iff {M : Type u_2} [Monoid M] {a : M} {u : Mˣ} :
Commute a u⁻¹ Commute a u
theorem AddCommute.addUnits_neg_left {M : Type u_2} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute (u) aAddCommute (↑(-u)) a
theorem Commute.units_inv_left {M : Type u_2} [Monoid M] {a : M} {u : Mˣ} :
Commute (u) aCommute (u⁻¹) a
@[simp]
theorem AddCommute.addUnits_neg_left_iff {M : Type u_2} [AddMonoid M] {a : M} {u : AddUnits M} :
AddCommute (↑(-u)) a AddCommute (u) a
@[simp]
theorem Commute.units_inv_left_iff {M : Type u_2} [Monoid M] {a : M} {u : Mˣ} :
Commute (u⁻¹) a Commute (u) a
theorem AddCommute.addUnits_val {M : Type u_2} [AddMonoid M] {u₁ : AddUnits M} {u₂ : AddUnits M} :
AddCommute u₁ u₂AddCommute u₁ u₂
theorem Commute.units_val {M : Type u_2} [Monoid M] {u₁ : Mˣ} {u₂ : Mˣ} :
Commute u₁ u₂Commute u₁ u₂
theorem AddCommute.addUnits_of_val {M : Type u_2} [AddMonoid M] {u₁ : AddUnits M} {u₂ : AddUnits M} :
AddCommute u₁ u₂AddCommute u₁ u₂
theorem Commute.units_of_val {M : Type u_2} [Monoid M] {u₁ : Mˣ} {u₂ : Mˣ} :
Commute u₁ u₂Commute u₁ u₂
@[simp]
theorem AddCommute.addUnits_val_iff {M : Type u_2} [AddMonoid M] {u₁ : AddUnits M} {u₂ : AddUnits M} :
AddCommute u₁ u₂ AddCommute u₁ u₂
@[simp]
theorem Commute.units_val_iff {M : Type u_2} [Monoid M] {u₁ : Mˣ} {u₂ : Mˣ} :
Commute u₁ u₂ Commute u₁ u₂
def AddUnits.leftOfAdd {M : Type u_2} [AddMonoid M] (u : AddUnits M) (a : M) (b : M) (hu : a + b = u) (hc : AddCommute a b) :

If the sum of two commuting elements is an additive unit, then the left summand is an additive unit.

Equations
Instances For
    theorem AddUnits.leftOfAdd.proof_1 {M : Type u_1} [AddMonoid M] (u : AddUnits M) (a : M) (b : M) (hu : a + b = u) :
    a + (b + ↑(-u)) = 0
    theorem AddUnits.leftOfAdd.proof_2 {M : Type u_1} [AddMonoid M] (u : AddUnits M) (a : M) (b : M) (hu : a + b = u) (hc : AddCommute a b) :
    b + ↑(-u) + a = 0
    def Units.leftOfMul {M : Type u_2} [Monoid M] (u : Mˣ) (a : M) (b : M) (hu : a * b = u) (hc : Commute a b) :

    If the product of two commuting elements is a unit, then the left multiplier is a unit.

    Equations
    Instances For
      def AddUnits.rightOfAdd {M : Type u_2} [AddMonoid M] (u : AddUnits M) (a : M) (b : M) (hu : a + b = u) (hc : AddCommute a b) :

      If the sum of two commuting elements is an additive unit, then the right summand is an additive unit.

      Equations
      Instances For
        theorem AddUnits.rightOfAdd.proof_2 {M : Type u_1} [AddMonoid M] (a : M) (b : M) (hc : AddCommute a b) :
        theorem AddUnits.rightOfAdd.proof_1 {M : Type u_1} [AddMonoid M] (u : AddUnits M) (a : M) (b : M) (hu : a + b = u) (hc : AddCommute a b) :
        b + a = u
        def Units.rightOfMul {M : Type u_2} [Monoid M] (u : Mˣ) (a : M) (b : M) (hu : a * b = u) (hc : Commute a b) :

        If the product of two commuting elements is a unit, then the right multiplier is a unit.

        Equations
        Instances For
          abbrev AddCommute.isAddUnit_add_iff.match_1 {M : Type u_1} [AddMonoid M] {a : M} {b : M} (motive : IsAddUnit (a + b)Prop) :
          (x : IsAddUnit (a + b)) → ((u : AddUnits M) → (hu : u = a + b) → motive (_ : u, u = a + b)) → motive x
          Equations
          Instances For
            theorem AddCommute.isAddUnit_add_iff {M : Type u_2} [AddMonoid M] {a : M} {b : M} (h : AddCommute a b) :
            theorem Commute.isUnit_mul_iff {M : Type u_2} [Monoid M] {a : M} {b : M} (h : Commute a b) :
            @[simp]
            theorem isAddUnit_add_self_iff {M : Type u_2} [AddMonoid M] {a : M} :
            @[simp]
            theorem isUnit_mul_self_iff {M : Type u_2} [Monoid M] {a : M} :
            IsUnit (a * a) IsUnit a
            theorem AddCommute.neg_right {G : Type u_1} [AddGroup G] {a : G} {b : G} :
            AddCommute a bAddCommute a (-b)
            theorem Commute.inv_right {G : Type u_1} [Group G] {a : G} {b : G} :
            Commute a bCommute a b⁻¹
            @[simp]
            theorem AddCommute.neg_right_iff {G : Type u_1} [AddGroup G] {a : G} {b : G} :
            @[simp]
            theorem Commute.inv_right_iff {G : Type u_1} [Group G] {a : G} {b : G} :
            theorem AddCommute.neg_left {G : Type u_1} [AddGroup G] {a : G} {b : G} :
            AddCommute a bAddCommute (-a) b
            theorem Commute.inv_left {G : Type u_1} [Group G] {a : G} {b : G} :
            Commute a bCommute a⁻¹ b
            @[simp]
            theorem AddCommute.neg_left_iff {G : Type u_1} [AddGroup G] {a : G} {b : G} :
            @[simp]
            theorem Commute.inv_left_iff {G : Type u_1} [Group G] {a : G} {b : G} :
            theorem AddCommute.neg_add_cancel {G : Type u_1} [AddGroup G] {a : G} {b : G} (h : AddCommute a b) :
            -a + b + a = b
            theorem Commute.inv_mul_cancel {G : Type u_1} [Group G] {a : G} {b : G} (h : Commute a b) :
            a⁻¹ * b * a = b
            theorem AddCommute.neg_add_cancel_assoc {G : Type u_1} [AddGroup G] {a : G} {b : G} (h : AddCommute a b) :
            -a + (b + a) = b
            theorem Commute.inv_mul_cancel_assoc {G : Type u_1} [Group G] {a : G} {b : G} (h : Commute a b) :
            a⁻¹ * (b * a) = b
            @[simp]
            theorem neg_add_cancel_comm {G : Type u_1} [AddCommGroup G] (a : G) (b : G) :
            -a + b + a = b
            @[simp]
            theorem inv_mul_cancel_comm {G : Type u_1} [CommGroup G] (a : G) (b : G) :
            a⁻¹ * b * a = b
            @[simp]
            theorem neg_add_cancel_comm_assoc {G : Type u_1} [AddCommGroup G] (a : G) (b : G) :
            -a + (b + a) = b
            @[simp]
            theorem inv_mul_cancel_comm_assoc {G : Type u_1} [CommGroup G] (a : G) (b : G) :
            a⁻¹ * (b * a) = b