Documentation

FltRegular.FltThree.OddPrimeOrFour

Being equal to 4 or odd.

Equations
Instances For
    theorem OddPrimeOrFour.exists_and_dvd {n : } (n2 : 2 < n) :
    p, p n OddPrimeOrFour p
    theorem associated_of_dvd {a : } {p : } (ha : OddPrimeOrFour a) (hp : OddPrimeOrFour p) (h : p a) :
    theorem dvd_or_dvd {a : } {p : } {x : } (ha : OddPrimeOrFour a) (hp : OddPrimeOrFour p) (hdvd : p a * x) :
    p a p x
    theorem exists_associated_mem_of_dvd_prod'' {p : } (hp : OddPrimeOrFour p) {s : Multiset } (hs : ∀ (r : ), r sOddPrimeOrFour r) (hdvd : p Multiset.prod s) :
    q, q s Associated p q
    theorem factors_unique_prod' {f : Multiset } {g : Multiset } :
    (∀ (x : ), x fOddPrimeOrFour x) → (∀ (x : ), x gOddPrimeOrFour x) → Associated (Multiset.prod f) (Multiset.prod g)Multiset.Rel Associated f g
    noncomputable def oddFactors (x : ) :

    The odd factors.

    Equations
    Instances For
      theorem oddFactors.nonneg {z : } {a : } (ha : a oddFactors z) :
      0 a
      theorem oddFactors.pow (z : ) (n : ) :
      noncomputable def evenFactorExp (x : ) :

      The exponent of 2 in the factorization.

      Equations
      Instances For
        theorem factors_2_even {z : } (hz : z 0) :
        noncomputable def factorsOddPrimeOrFour (z : ) :

        Odd factors or 4.

        Equations
        Instances For
          theorem factorsOddPrimeOrFour.associated' {a : } {f : Multiset } (hf : ∀ (x : ), x fOddPrimeOrFour x) (ha : 0 < a) (heven : Even (evenFactorExp a)) (hassoc : Associated (Multiset.prod f) a) :
          theorem factorsOddPrimeOrFour.unique' {a : } {f : Multiset } (hf : ∀ (x : ), x fOddPrimeOrFour x) (hf' : ∀ (x : ), x f0 x) (ha : 0 < a) (heven : Even (evenFactorExp a)) (hassoc : Associated (Multiset.prod f) a) :