theorem
associated_of_dvd
{a : ℤ}
{p : ℤ}
(ha : OddPrimeOrFour a)
(hp : OddPrimeOrFour p)
(h : p ∣ a)
:
Associated p a
theorem
dvd_or_dvd
{a : ℤ}
{p : ℤ}
{x : ℤ}
(ha : OddPrimeOrFour a)
(hp : OddPrimeOrFour p)
(hdvd : p ∣ a * x)
:
theorem
exists_associated_mem_of_dvd_prod''
{p : ℤ}
(hp : OddPrimeOrFour p)
{s : Multiset ℤ}
(hs : ∀ (r : ℤ), r ∈ s → OddPrimeOrFour r)
(hdvd : p ∣ Multiset.prod s)
:
∃ q, q ∈ s ∧ Associated p q
theorem
factors_unique_prod'
{f : Multiset ℤ}
{g : Multiset ℤ}
:
(∀ (x : ℤ), x ∈ f → OddPrimeOrFour x) →
(∀ (x : ℤ), x ∈ g → OddPrimeOrFour x) → Associated (Multiset.prod f) (Multiset.prod g) → Multiset.Rel Associated f g
The odd factors.
Equations
Instances For
The exponent of 2
in the factorization.
Equations
Instances For
theorem
even_and_oddFactors
(x : ℤ)
(hx : x ≠ 0)
:
Associated x (2 ^ evenFactorExp x * Multiset.prod (oddFactors x))
Odd factors or 4
.
Equations
- factorsOddPrimeOrFour z = Multiset.replicate (evenFactorExp z / 2) 4 + oddFactors z
Instances For
theorem
factorsOddPrimeOrFour.associated'
{a : ℤ}
{f : Multiset ℤ}
(hf : ∀ (x : ℤ), x ∈ f → OddPrimeOrFour x)
(ha : 0 < a)
(heven : Even (evenFactorExp a))
(hassoc : Associated (Multiset.prod f) a)
:
Multiset.Rel Associated f (factorsOddPrimeOrFour a)
theorem
factorsOddPrimeOrFour.unique'
{a : ℤ}
{f : Multiset ℤ}
(hf : ∀ (x : ℤ), x ∈ f → OddPrimeOrFour x)
(hf' : ∀ (x : ℤ), x ∈ f → 0 ≤ x)
(ha : 0 < a)
(heven : Even (evenFactorExp a))
(hassoc : Associated (Multiset.prod f) a)
:
theorem
factorsOddPrimeOrFour.pow
(z : ℤ)
(n : ℕ)
(hz : Even (evenFactorExp z))
:
factorsOddPrimeOrFour (z ^ n) = n • factorsOddPrimeOrFour z