
The Blueprint For Formalizing Geometric
Algebra in Lean

Eric Wieser, Utensil Song

May 28, 2024

Introduction
The goal of this document is to provide a detailed account of the formalization
of Geometric Algebra (GA) a.k.a. Clifford Algebra [Hestenes and Sobczyk(1984)]
in the Lean 4 theorem prover and programming language [Moura and Ullrich(2021),
de Moura et al.(2015), Ullrich(2023)] and using its Mathematical Library Math-
lib [The mathlib Community(2020)].

The web version of this blueprint is available here.

1 Preliminaries
This section introduces the algebraic environment of Clifford Algebra, covering
vector spaces, groups, algebras, representations, modules, multilinear algebras,
quadratic forms, filtrations and graded algebras.

The material in this section should be familiar to the reader, but it is worth
reading through it to become familiar with the notation and terminology that
is used, as well as their counterparts in Lean, which usually require some addi-
tional treatment, both mathematically and technically (probably applicable to
other formal proof verification systems).

Details can be found in the references in corresponding section, or you may
hover a definition/theorem, then click on L��N for the Lean 4 code.

In this section, we follow [Jadczyk(2019)], with supplements from [Garling(2011),
Chen(2016)], and modifications to match the counterparts in Lean’s Mathlib .

1

https://utensil.github.io/lean-ga/blueprint/


Remark 1.0.1 — We unify the informal mathematical language for a
definition to:

Let𝐴 be a concept 𝐴. A concept 𝐵 is a set/pair/triple/tuple (𝐵, op, ...),
satisfying:

1. 𝐵 is a concept 𝐶 over 𝐴 under op .

2. formula for all elements in 𝐵 ( property ).

3. for each element in concept 𝐴 there exists element such that formula
for all elements in concept 𝐵.

4. op is called op name, for all elements in 𝐵, we have

(i) formula
(ii) formula

( property ).

By default, 𝐴 is a set, op is a binary operation on 𝐴.

1.1 Basics: from groups to modules
Definition 1.1.1 (Group). A group is a pair (𝐺, ∗), satisfying:

1. (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝐺 (associativity).

2. there exists 1 ∈ 𝐺 such that 1 ∗ 𝑎 = 𝑎 ∗ 1 = 𝑎 for all 𝑎 ∈ 𝐺.

3. for each 𝑎 ∈ 𝐺 there exists 𝑎−1 ∈ 𝐺 such that 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 1.

Remark 1.1.2 — It then follows that 𝑒, the identity element, is unique,
and that for each 𝑔 ∈ 𝐺 the inverse 𝑔−1 is unique.

A group G is abelian, or commutative, if 𝑔 ∗ ℎ = ℎ ∗ 𝑔 for all 𝑔, ℎ ∈ 𝐺.
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Remark 1.1.3 — In literatures, the binary operation are usually denoted
by juxtaposition, and is understood to be a mapping (𝑔, ℎ) ↦→ 𝑔 ∗ ℎ from
𝐺 × 𝐺 to 𝐺.

Mathlib uses a slightly different way to encode this, 𝐺 → 𝐺 → 𝐺 is
understood to be 𝐺 → (𝐺 → 𝐺), that sends 𝑔 ∈ 𝐺 to a mapping that
sends ℎ ∈ 𝐺 to 𝑔 ∗ ℎ ∈ 𝐺.

Furthermore, a mathematical construct is represented by a “type”, as
Lean has a dependent type theory foundation, see [Carneiro(2019)] and
[Ullrich(2023), section 3.2].

It can be denoted multiplicatively as ∗ in Group or additively as + in
AddGroup, where 𝑒 will be denoted by 1 or 0, respectively.

Sometimes we use notations with subscripts (e.g. ∗𝐺, 1𝐺) to indicate
where they are.

We will use the corresponding notation in Mathlib for future opera-
tions without further explanation.

Definition 1.1.4 (Monoid). A monoid is a pair (𝑅, ∗), satisfying:

1. (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝑅 (associativity).

2. there exists an element 1 ∈ 𝑅 such that 1 ∗ 𝑎 = 𝑎 ∗ 1 = 𝑎 for all 𝑎 ∈ 𝑅
i.e. 1 is the multiplicative identity (neutral element).

Definition 1.1.5 (Ring). A ring is a triple (𝑅,+, ∗), satisfying:

1. 𝑅 is a commutative group under +.

2. 𝑅 is a monoid under ∗.
3. for all 𝑎, 𝑏, 𝑐 ∈ 𝑅, we have

(i) 𝑎 ∗ (𝑏 + 𝑐) = 𝑎 ∗ 𝑏 + 𝑎 ∗ 𝑐
(ii) (𝑎 + 𝑏) ∗ 𝑐 = 𝑎 ∗ 𝑐 + 𝑏 ∗ 𝑐

(left and right distributivity over +).

Remark 1.1.6 — In applications to Clifford algebras 𝑅 will be always
assumed to be commutative.

Definition 1.1.7 (Division ring). A division ring is a ring (𝑅,+, ∗), satisfying:

1. 𝑅 contains at least 2 elements.

2. for all 𝑎 ≠ 0 in 𝑅, there exists a multiplicative inverse 𝑎−1 ∈ 𝑅 such that

𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 1

Definition 1.1.8 (Module). Let 𝑅 be a commutative ring. A module over 𝑅 (in
short 𝑅-module) is a pair (𝑀, •), satisfying:
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1. M is a group under +.

2. • : 𝑅 → 𝑀 → 𝑀 is called scalar multiplication, for every 𝑎, 𝑏 ∈ 𝑅,
𝑥, 𝑦 ∈ 𝑀, we have

(i) 𝑎 • (𝑥 + 𝑦) = 𝑎 • 𝑥 + 𝑏 • 𝑦
(ii) (𝑎 + 𝑏) • 𝑥 = 𝑎 • 𝑥 + 𝑏 • 𝑥

(iii) 𝑎 ∗ (𝑏 • 𝑥) = (𝑎 ∗ 𝑏) • 𝑥
(iv) 1𝑅 • 𝑥 = 𝑥

Remark 1.1.9 — The notation of scalar multiplication is generalized as
heterogeneous scalar multiplication HMul in Mathlib :

• : 𝛼 → 𝛽 → 𝛾

where 𝛼, 𝛽, 𝛾 are different types.

Definition 1.1.10 (Vector space). If 𝑅 is a division ring, then a module 𝑀 over
𝑅 is called a vector space.

Remark 1.1.11 — For generality, Mathlib uses Module throughout for
vector spaces, particularly, for a vector space 𝑉 , it’s usually declared as
/--

Let 𝐾 be a division ring, a module 𝑉 over 𝐾 is a vector space
where being a module requires 𝑉 to be a commutative group
over +.

-/
variable [DivisionRing K] [AddCommGroup V] [Module K V]

for definitions/theorems about it, and most of them can be found
under Mathlib.LinearAlgebra e.g. LinearIndependent.

Remark 1.1.12 — A submodule 𝑁 of 𝑀 is a module 𝑁 such that every
element of 𝑁 is also an element of 𝑀.

If 𝑀 is a vector space then 𝑁 is called a subspace.

Definition 1.1.13 (Dual module). The dual module 𝑀∗ : 𝑀 →𝑙[𝑅] 𝑅 is the 𝑅-
module of all linear maps from 𝑀 to 𝑅.

1.2 Algebras
Definition 1.2.1 (Ring homomorphism). Let (𝛼,+𝛼 , ∗𝛼) and (𝛽,+𝛽 , ∗𝛽) be rings.

A ring homomorphism from 𝛼 to 𝛽 is a map 1 : 𝛼 →+∗ 𝛽 such that

(i) 1(𝑥 +𝛼 𝑦) = 1(𝑥) +𝛽 1(𝑦) for each 𝑥, 𝑦 ∈ 𝛼.
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(ii) 1(𝑥 ∗𝛼 𝑦) = 1(𝑥) ∗𝛽 1(𝑦) for each 𝑥, 𝑦 ∈ 𝛼.

(iii) 1(1𝛼) = 1𝛽.

Remark 1.2.2 — Isomorphism 𝐴 � 𝐵 is a bĳective homomorphism
𝜙 : 𝐴→ 𝐵 (it follows that 𝜙−1 : 𝐵 → 𝐴 is also a homomorphism).

Endomorphism is a homomorphism from an object to itself, denoted
End(𝐴).

Automorphism is an endomorphism which is also an isomorphism,
denoted Aut(𝐴).

Definition 1.2.3 (Algebra). Let 𝑅 be a commutative ring. An algebra 𝐴 over 𝑅
is a pair (𝐴, •), satisfying:

1. 𝐴 is a ring under ∗.
2. there exists a ring homomorphism from 𝑅 to 𝐴, denoted 1 : 𝑅 →+∗ 𝐴.

3. • : 𝑅 → 𝑀 → 𝑀 is a scalar multiplication

4. for every 𝑟 ∈ 𝑅, 𝑥 ∈ 𝐴, we have

(i) 𝑟 ∗ 𝑥 = 𝑥 ∗ 𝑟 (commutativity between 𝑅 and 𝐴)
(ii) 𝑟 • 𝑥 = 𝑟 ∗ 𝑥 (definition of scalar multiplication)

where we omitted that the ring homomorphism 1 is applied to 𝑟 before each
multiplication.

Remark 1.2.4 — Following literatures, for 𝑟 ∈ 𝑅, usually we write 1𝐴(𝑟) :
𝑅 →+∗ 𝐴 as a product 𝑟1𝐴 if not omitted, while they are written as a call to
algebraMap _ _ r in Mathlib , which is defined to be Algebra.toRingHom r.

Remark 1.2.5 — The definition above (adopted in Mathlib ) is more
general than the definition in literature:

Let 𝑅 be a commutative ring. An algebra 𝐴 over 𝑅 is a pair (𝑀, ∗),
satisfying:

1. 𝐴 is a module 𝑀 over 𝑅 under + and •.

2. 𝐴 is a ring under ∗.
3. For 𝑥, 𝑦 ∈ 𝐴, 𝑎 ∈ 𝑅, we have

𝑎 • (𝑥 ∗ 𝑦) = (𝑎 • 𝑥) ∗ 𝑦 = 𝑥 ∗ (𝑎 • 𝑦)
See Implementation notes in Algebra for details.
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Remark 1.2.6 — What’s simply called algebra is actually associative al-
gebra with identity, a.k.a. associative unital algebra. See the red herring
principle for more about such phenomenon for naming, particularly the
example of (possibly) nonassociative algebra.

Definition 1.2.7 (Algebra homomorphism). Let 𝐴 and 𝐵 be 𝑅-algebras. 1𝐴 and
1𝐵 are ring homomorphisms from 𝑅 to 𝐴 and 𝐵, respectively.

A algebra homomorphism from 𝐴 to 𝐵 is a map 𝑓 : 𝛼 →𝑎 𝛽 such that

1. 𝑓 is a ring homomorphism

2. 𝑓 (1𝐴(𝑟)) = 1𝐵(𝑟) for each 𝑟 ∈ 𝑅
Definition 1.2.8 (Ring quotient). Let 𝑅 be a non-commutative ring, 𝑟 an arbi-
trary equivalence relation on 𝑅. The ring quotient of 𝑅 by 𝑟 is the quotient of
𝑅 by the strengthen equivalence relation of 𝑟 such that for all 𝑎, 𝑏, 𝑐 in 𝑅:

1. 𝑎 + 𝑐 ∼ 𝑏 + 𝑐 if 𝑎 ∼ 𝑏
2. 𝑎 ∗ 𝑐 ∼ 𝑏 ∗ 𝑐 if 𝑎 ∼ 𝑏
3. 𝑎 ∗ 𝑏 ∼ 𝑎 ∗ 𝑐 if 𝑏 ∼ 𝑐

i.e. the equivalence relation is compatible with the ring operations + and ∗.

Remark 1.2.9 — As ideals haven’t been formalized for the non-commutative
case, Mathlib uses RingQuot in places where the quotient of non-commutative
rings by ideal is needed.

The universal properties of the quotient are proven, and should be
used instead of the definition that is subject to change.

Definition 1.2.10 (Free algebra). Let 𝑋 be an arbitrary set. An free 𝑅-algebra 𝐴
on 𝑋 (or “generated by 𝑋 ”) is the ring quotient of the following inductively
constructed set 𝐴pre

1. for all 𝑥 in 𝑋, there exists a map 𝑋 → 𝐴pre.

2. for all 𝑟 in 𝑅, there exists a map 𝑅 → 𝐴pre.

3. for all 𝑎, 𝑏 in 𝐴pre, 𝑎 + 𝑏 is in 𝐴pre.

4. for all 𝑎, 𝑏 in 𝐴pre, 𝑎 ∗ 𝑏 is in 𝐴pre.

by that equivalence relation that makes 𝐴 an 𝑅-algebra, namely:

1. there exists a ring homomorphism from 𝑅 to 𝐴pre, denoted 𝑅 →+∗ 𝐴pre.

2. 𝐴 is a commutative group under +.

3. 𝐴 is a monoid under ∗.
4. left and right distributivity under ∗ over +.
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5. 0 ∗ 𝑎 ∼ 𝑎 ∗ 0 ∼ 0.

6. for all 𝑎, 𝑏, 𝑐 in 𝐴, if 𝑎 ∼ 𝑏, we have

(i) 𝑎 + 𝑐 ∼ 𝑏 + 𝑐
(ii) 𝑐 + 𝑎 ∼ 𝑐 + 𝑏

(iii) 𝑎 ∗ 𝑐 ∼ 𝑏 ∗ 𝑐
(iv) 𝑐 ∗ 𝑎 ∼ 𝑐 ∗ 𝑏

(compatibility with the ring operations + and ∗)

Remark 1.2.11 — What we defined here is the free (associative, uni-
tal) 𝑅-algebra on 𝑋, it can be denoted 𝑅⟨𝑋⟩, expressing that it’s freely
generated by 𝑅 and 𝑋, where 𝑋 is the set of generators.

Definition 1.2.12 (Linear map). Let 𝑅, 𝑆 be rings, 𝑀 an 𝑅-module, 𝑁 an 𝑆-
module. A linear map from 𝑀 to 𝑁 is a function 𝑓 : 𝑀 →𝑙 𝑁 over a ring
homomorphism 𝜎 : 𝑅 →+∗ 𝑆, satisfying:

1. 𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ 𝑀.

2. 𝑓 (𝑟 • 𝑥) = 𝜎(𝑟) • 𝑓 (𝑥) for all 𝑟 ∈ 𝑅, 𝑥 ∈ 𝑀.

Remark 1.2.13 — The set of all linear maps from 𝑀 to 𝑀′ is denoted
Lin(𝑀,𝑀′), and Lin(𝑀) for mapping from 𝑀 to itself.

Lin(𝑀) is an endomorphism.

Definition 1.2.14 (Tensor algebra). Let 𝐴 be a free 𝑅-algebra generated by mod-
ule 𝑀, let 𝜄 : 𝑀 → 𝐴 denote the map from 𝑀 to 𝐴.

An tensor algebra over 𝑀 (or “of 𝑀 ”) 𝑇 is the ring quotient of the free
𝑅-algebra generated by 𝑀, by the equivalence relation satisfying:

1. for all 𝑎, 𝑏 in 𝑀, 𝜄(𝑎 + 𝑏) ∼ 𝜄(𝑎) + 𝜄(𝑏).
2. for all 𝑟 in 𝑅, 𝑎 in 𝑀, 𝜄(𝑟 • 𝑎) ∼ 𝑟 ∗ 𝜄(𝑎).
i.e. making the inclusion of 𝑀 into an 𝑅-linear map.

Remark 1.2.15 — The definition above is equivalent to the following
definition in literature:

Let 𝑀 be a module over 𝑅. An algebra 𝑇 is called a tensor algebra
over 𝑀 (or “of 𝑀 ”) if it satisfies the following universal property

1. 𝑇 is an algebra containing 𝑀 as a submodule, and it is generated
by 𝑀,

2. Every linear mapping 𝜆 of 𝑀 into an algebra 𝐴 over 𝑅, can be ex-
tended to a homomorphism 𝜃 of 𝑇 into 𝐴.
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1.3 Forms
Definition 1.3.1 (Bilinear form). Let 𝑅 be a ring, 𝑀 an 𝑅-module. An bilinear
form 𝐵 over 𝑀 is a map 𝐵 : 𝑀 → 𝑀 → 𝑅, satisfying:

1. 𝐵(𝑥 + 𝑦, 𝑧) = 𝐵(𝑥, 𝑧) + 𝐵(𝑦, 𝑧)
2. 𝐵(𝑥, 𝑦 + 𝑧) = 𝐵(𝑥, 𝑦) + 𝐵(𝑥, 𝑧)
3. 𝐵(𝑎 • 𝑥, 𝑦) = 𝑎 ∗ 𝐵(𝑥, 𝑦)
4. 𝐵(𝑥, 𝑎 • 𝑦) = 𝑎 ∗ 𝐵(𝑥, 𝑦)
for all 𝑎 ∈ 𝑅, 𝑥, 𝑦, 𝑧 ∈ 𝑀.

Definition 1.3.2 (Quadratic form). Let 𝑅 be a commutative ring, 𝑀 a 𝑅-module.
An quadratic form 𝑄 over 𝑀 is a map 𝑄 : 𝑀 → 𝑅, satisfying:

1. 𝑄(𝑎 • 𝑥) = 𝑎 ∗ 𝑎 ∗𝑄(𝑥) for all 𝑎 ∈ 𝑅, 𝑥 ∈ 𝑀.

2. there exists a companion bilinear form 𝐵 : 𝑀 → 𝑀 → 𝑅, such that
𝑄(𝑥 + 𝑦) = 𝑄(𝑥) +𝑄(𝑦) + 𝐵(𝑥, 𝑦)

In some literatures, the bilinear form is denotedΦ, and called the polar form
associated with the quadratic form 𝑄, or simply the polar form of 𝑄.

Remark 1.3.3 — This notion generalizes to commutative semirings us-
ing the approach in [Izhakian et al.(2016)].

2 Clifford Algebra
2.1 Definition
Let 𝑀 be a module over a commutative ring 𝑅, equipped with a quadratic form
𝑄 : 𝑀 → 𝑅.
Definition 2.1.1 (Clifford algebra). Let 𝜄 : 𝑀 →𝑙[𝑅] 𝑇(𝑀) be the canonical 𝑅-
linear map for the tensor algebra 𝑇(𝑀).

Let 1 : 𝑅 →+∗ 𝑇(𝑀) be the canonical map from 𝑅 to 𝑇(𝑀), as a ring homo-
morphism.

A Clifford algebra over𝑄, denoted 𝒞ℓ (𝑄), is the ring quotient of the tensor
algebra 𝑇(𝑀) by the equivalence relation satisfying 𝜄(𝑚)2 ∼ 1(𝑄(𝑚)) for all
𝑚 ∈ 𝑀.

The natural quotient map is denoted 𝜋 : 𝑇(𝑀) → 𝒞ℓ (𝑄) in some literatures,
or 𝜋Φ/𝜋𝑄 to emphasize the bilinear form Φ or the quadratic form 𝑄, respec-
tively.
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Remark 2.1.2 — In literatures, 𝑀 is often written𝑉 , and the quotient is
taken by the two-sided ideal 𝐼𝑄 generated from the set {𝑣 ⊗ 𝑣 −𝑄(𝑣) | 𝑣 ∈
𝑉}.

As of writing, Mathlib does not have direct support for two-sided ide-
als, but it does support the equivalent operation of taking the ring quo-
tient by a suitable closure of a relation like 𝑣 ⊗ 𝑣 ∼ 𝑄(𝑣).

Hence the definition above.

Remark 2.1.3 — This definition and what follows in Mathlib is initially
presented in [Wieser and Song(2022)], some further developments are
based on [Grinberg(2016)], and in turn based on [Bourbaki(2007)] which
is in French and never translated to English.

The most informative English reference on [Bourbaki(2007)] is
[Jadczyk(2019)], which has an updated exposition in [Jadczyk(2023)].

Example 2.1.4 (Clifford algebra over a vector space)
Let 𝑉 be a vector space R𝑛 over R, equipped with a quadratic form 𝑄.

Since R is a commutative ring and 𝑉 is a module, definition 2.1.1 of
Clifford algebra applies.

Definition 2.1.5 (Clifford map). We denote the canonical 𝑅-linear map to the
Clifford algebra 𝒞ℓ (𝑀) by 𝜄 : 𝑀 →𝑙[𝑅] 𝒞ℓ (𝑀).

It’s denoted 𝑖Φ or just 𝑖 in some literatures.
Definition 2.1.6 (Clifford lift). Given a linear map 𝑓 : 𝑀 →𝑙[𝑅] 𝐴 into an 𝑅-
algebra 𝐴, satisfying 𝑓 (𝑚)2 = 𝑄(𝑚) for all 𝑚 ∈ 𝑀, called is Clifford, the
canonical lift of 𝑓 is defined to be a algebra homomorphism from 𝒞ℓ (𝑄) to
𝐴, denoted lift 𝑓 : 𝒞ℓ (𝑄) →𝑎 𝐴.

Theorem 2.1.7 (Universal property)
Given 𝑓 : 𝑀 →𝑙[𝑅] 𝐴, which is Clifford, 𝐹 = lift 𝑓 (denoted 𝑓 in some
literatures), we have:

1) 𝐹 ◦ 𝜄 = 𝑓 , i.e. the following diagram commutes:

𝒞ℓ (𝑄) 𝐴

𝑉

𝐹=lift 𝑓

𝑓
𝜄

2) lift is unique, i.e. given 𝐺 : 𝒞ℓ (𝑄) →𝑎 𝐴, we have:
𝐺 ◦ 𝜄 = 𝑓 ⇐⇒ 𝐺 = lift 𝑓
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Remark 2.1.8 — The universal property of the Clifford algebras is now
proven, and should be used instead of the definition that is subject to
change.

Definition 2.1.9 (Exterior algebra). An Exterior algebra over 𝑀 is the Clifford
algebra 𝒞ℓ (𝑄) where 𝑄(𝑚) = 0 for all 𝑚 ∈ 𝑀.

2.2 Operations
Same as the previous section, let 𝑀 be a module over a commutative ring 𝑅,
equipped with a quadratic form 𝑄 : 𝑀 → 𝑅.

We also use𝑚 or𝑚1 , 𝑚2 , . . . to denote elements of𝑀, i.e. vectors, and 𝑥, 𝑦, 𝑧
to denote elements of 𝒞ℓ (𝑄).
Definition 2.2.1 (Grade involution). Grade involution, intuitively, is negating
each basis vector.

Formally, it’s an algebra homomorphism 𝛼 : 𝒞ℓ (𝑄) →𝑎 𝒞ℓ (𝑄), satisfying:

1. 𝛼 ◦ 𝛼 = id

2. 𝛼(𝜄(𝑚)) = −𝜄(𝑚)
for all 𝑚 ∈ 𝑀.
It’s called main involution 𝛼 or main automorphism in [Jadczyk(2019)], the

canonical automorphism in [Gallier(2008)].
It’s denoted �̂� in [Lounesto(2001)], 𝛼(𝑚) in [Jadczyk(2019)],𝑚∗ in [Chisolm(2012)].

𝒞ℓ (𝑄) 𝒞ℓ (𝑄)

𝑉

𝛼

−𝜄𝜄

Definition 2.2.2 (Grade reversion). Grade reversion, intuitively, is reversing the
multiplication order of basis vectors.

Formally, it’s an algebra homomorphism 𝜏 : 𝒞ℓ (𝑄) →𝑎 𝒞ℓ (𝑄)op, satisfying:

1. 𝜏(𝑚1𝑚2) = 𝜏(𝑚2)𝜏(𝑚1)
2. 𝜏 ◦ 𝜏 = id

3. 𝜏(𝜄(𝑚)) = 𝜄(𝑚)
It’s called anti-involution 𝜏 in [Jadczyk(2019)], the canonical anti-automorphism

in [Gallier(2008)], also called transpose/transposition in some literature, fol-
lowing tensor algebra or matrix.

It’s denoted �̃� in [Lounesto(2001)], 𝑚𝜏 in [Jadczyk(2019)] (with variants like
𝑚𝑡 or 𝑚⊤ in other literatures), 𝑚† in [Chisolm(2012)].
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𝒞ℓ (𝑄) 𝒞ℓ (𝑄)op

𝑉

𝜏

𝜄𝜄

Definition 2.2.3 (Clifford conjugate). Clifford conjugate is an algebra homo-
morphism ∗ : 𝒞ℓ (𝑄) →𝑎 𝒞ℓ (𝑄), denoted 𝑥∗ (or even 𝑥†, 𝑥𝑣 in some literatures),
defined to be:

𝑥∗ = reverse(involute(𝑥)) = 𝜏(𝛼(𝑥))
for all 𝑥 ∈ 𝒞ℓ (𝑄), satisfying (as a ∗-ring):

1. (𝑥 + 𝑦)∗ = (𝑥)∗ + (𝑦)∗
2. (𝑥𝑦)∗ = (𝑦)∗(𝑥)∗
3. ∗ ◦ ∗ = id

4. 1∗ = 1

and (as a ∗-algebra):

(𝑟𝑥)∗ = 𝑟′𝑥∗

for all 𝑟 ∈ 𝑅, 𝑥, 𝑦 ∈ 𝒞ℓ (𝑄) where ′ is the involution of the commutative
∗-ring 𝑅.

Note: In our current formalization in Mathlib , the application of the in-
volution on 𝑟 is ignored, as there appears to be nothing in the literature that
advocates doing this.

Clifford conjugate is denoted �̄� in [Lounesto(2001)] and most literatures,
𝑚‡ in [Chisolm(2012)].
Definition 2.2.4 (𝑍2-graded derivations 𝑖 𝑓 , anti-derivation). We denote by End(𝑀)
the algebra of all endomorphisms (linear maps) of 𝑀.

For 𝑚 ∈ 𝑀, the linear operator 𝑒𝑚 ∈ End(T(𝑀)), T𝑝(𝑀) → T𝑝+1(𝑀) is of left
multiplication by 𝑚 :

𝑒𝑚 : 𝑥 ↦→ 𝑒𝑚(𝑥) = 𝑚 ⊗ 𝑥

for all 𝑥 ∈ T(𝑀).
Let 𝑓 be an element of the dual module 𝑀∗.
The anti-derivation 𝑖 𝑓 : 𝑇(𝑀) →𝑙[𝑇] (𝑀) is a linear map from 𝑇(𝑀) to 𝑇(𝑀),

satisfying:

1. 𝑖 𝑓 (1) = 0

2. 𝑒𝑚 ◦ 𝑖 𝑓 + 𝑖 𝑓 ◦ 𝑒𝑚 = 𝑓 (𝑚) · 1 for all 𝑚 ∈ 𝑀
The map 𝑓 ↦→ 𝑖 𝑓 from 𝑀∗ to linear transformations on 𝑇(𝑀) is linear. We

have

1. 𝑖 𝑓 (𝑚 ⊗ 𝑥) = 𝑓 (𝑚)𝑥 − 𝑚 ⊗ 𝑖 𝑓 (𝑥) for all 𝑚 ∈ 𝑀 ⊂ 𝑇(𝑀), 𝑥 ∈ 𝑇(𝑀)
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2. 𝑖 𝑓 (𝑇𝑝𝑀) ⊂ 𝑇𝑝−1𝑀

3. 𝑖2𝑓 = 0

4. 𝑖 𝑓 𝑖𝑔 + 𝑖𝑔 𝑖 𝑓 = 0, for all 𝑓 , 𝑔 ∈ 𝑀∗

For 𝑚1 , . . . , 𝑚𝑝 ∈ 𝑀 we have

𝑖 𝑓
(
𝑚1 ⊗ · · · ⊗ 𝑚𝑝

)
=

𝑝∑
𝑖=1

(−1)𝑖−1 𝑓 (𝑚𝑖)𝑚1 ⊗ · · · ⊗ �̌�𝑖 ⊗ · · · ⊗ 𝑚𝑝

where �̌�𝑖 denotes deletion (of 𝑚𝑖 from the multiplication).
For a quadratic form 𝑄 on 𝑀, 𝑖 𝑓 can be defined on the quotient Clifford

algebra:

𝜄 ◦ 𝑖 𝑓 = 𝑖 𝑓 ◦ 𝜄,

satisfying:

1. 𝑖 𝑓 (1) = 0 for 1 ∈ 𝒞ℓ (𝑄)
2. 𝑖 𝑓 (𝜄(𝑚)𝑥) = 𝑓 (𝑚)𝑥 − 𝜄(𝑚)𝑖 𝑓 (𝑥) for all 𝑚 ∈ 𝑀, 𝑥 ∈ 𝒞ℓ (𝑄)
Let 𝐹 be a bilinear form on 𝑀. Then every 𝑚 ∈ 𝑀 determines a linear form

𝑓𝑚 on 𝑀 defined as 𝑓𝑚(𝑚′) = 𝐹(𝑚, 𝑚′).
We will denote by 𝑖𝐹𝑚 the antiderivation 𝑖 𝑓𝑚 . We have:

1. 𝑖𝐹𝑚(1) = 0,

2. 𝑖𝐹𝑚(𝑚′ ⊗ 𝑥) = 𝐹(𝑚, 𝑚′)𝑥 − 𝑚′ ⊗ 𝑖𝐹𝑚(𝑥) for all 𝑚′ ∈ 𝑀, 𝑥 ∈ 𝑇(𝑀)
For 𝑥1 , . . . , 𝑥𝑛 in 𝑇(𝑀), we have

𝑖𝐹𝑚 (𝑥1 ⊗ · · · ⊗ 𝑥𝑛) =
𝑛∑
𝑗=1

(−1)𝑗−1𝐹
(
𝑚, 𝑥 𝑗

)
𝑥1 ⊗ · · · ⊗ �̌� 𝑗 ⊗ · · · ⊗ 𝑥𝑛

As it was in the case with 𝑖 𝑓 , we will denote by 𝑖𝐹𝑥 the antiderivation 𝑖 𝑓 for
𝑓𝑚(𝑚′) = 𝐹(𝑚, 𝑚′) :

𝑖𝐹𝑚 = 𝑖 𝑓

for 𝑓𝑚(𝑚′) = 𝐹(𝑚, 𝑚′), (𝑚, 𝑚′ ∈ 𝑀)
This is the approach used in [Bourbaki(2007)], and re-introduced in [Jadczyk(2019),

Jadczyk(2023)].
𝑖 𝑓 is denoted 𝜕𝑣 for 𝑣 ∈ 𝒞ℓ (𝑄)1 in [Lundholm and Svensson(2009)].
This is closely related to contraction (i.e. 𝜄(𝑚)⌋𝑥 = 𝑚⌋𝐹𝑥 � 𝑖𝐹𝑚(𝑥) for 𝑄 = 0 )

and interior product.

12

https://en.wikipedia.org/wiki/Interior_product


2.3 Structure

2.4 Classification

2.5 Representation

2.6 Spin

3 Geometric Algebra
3.1 Axioms

3.2 Contents
This section would contain what’s in Section “The contents of a geometric alge-
bra” in [Chisolm(2012)], e.g. 𝑟-blades, 𝑟-vectors, before we can discuss anything
about the GA operations.

That means we need to first formalize the counter parts in Clifford Algebra,
e.g. Lipschitz Group, Spin Group, and Z-filteration in Clifford Algebra.

Jiale Miao’s mathlib#16040 (ported to Lean 4 as mathlib4#9111 ) seems to be
a more principled attempt than versors in lean-ga except for the part involving
Z-filteration which is still worth porting, possibly with ideas from the prototype
here.

We also wish to include some latest results presented in [Ruhe et al.(2023)],
with supplements from [Brehmer et al.(2023)], in which some of the results are
proven in [Roelfs and De Keninck(2023)].
Definition 3.2.1 (Lipschitz group). TODO
Definition 3.2.2 (Spin group). TODO

Theorem 3.2.3 (The dimension of Clifford algebra)
dim𝒞ℓ (𝑄) = 2𝑛

where 𝑛 = dim𝑀.
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3.3 Operations and properties

4 Concrete algebras - definition
4.1 CGA

4.2 PGA

4.3 STA

5 Applications
5.1 Geometry

6 Dependency graph

Group

Ring

Module DivisionRingRingHom

RingQuotLinearMap VectorSpaceAlgebra BilinFormAlgHom

FreeAlgebraDual

TensorAlgebra

QuadraticForm

Monoid

Figure 1: Preliminaries
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CliffordAlgebra

lift ExteriorAlgebra iota antiDeriv
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conjugate

Figure 2: Clifford Algebra

Legends:

• Boxes: definitions

• Ellipses: theorems and lemmas

• Blue border: the statement of this result is ready to be formalized; all
prerequisites are done

• Blue background: the proof of this result is ready to be formalized; all
prerequisites are done

• Green border: the statement of this result is formalized

• Green background: the proof of this result is formalized
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