Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+πŸ–±οΈ to focus. On Mac, use ⌘ instead of Ctrl.
Hover-Settings: Show types: Show goals:
import Mathlib.Testing.SlimCheck.Functions

info:

error:

Found problems! x := 0 y := 0 issue: 0 β‰  0 does not hold (0 shrinks)

Error: ❌️ Docstring on `#guard_msgs` does not match generated message: info: --- error: =================== Found problems! x := 0 y := 0 issue: 0 β‰  0 does not hold (0 shrinks) -------------------
(whitespace := lax) in
Error: =================== Found problems! x := 0 y := 0 issue: 0 β‰  0 does not hold (0 shrinks) -------------------
Error: =================== Found problems! x := 0 y := 0 issue: 0 β‰  0 does not hold (0 shrinks) -------------------

Goals accomplished! πŸ™
Error: =================== Found problems! x := 0 y := 0 issue: 0 β‰  0 does not hold (0 shrinks) -------------------
instance
SlimCheck.Testable.existsTestable: {Ξ± : Sort u_1} β†’ {var : String} β†’ (p : Prop) β†’ {Ξ² : Ξ± β†’ Prop} β†’ [inst : Testable (NamedBinder var (βˆ€ (x : Ξ±), NamedBinder var (Ξ² x β†’ p)))] β†’ Testable (NamedBinder var (NamedBinder var (βˆƒ x, Ξ² x) β†’ p))
SlimCheck.Testable.existsTestable
(
p: Prop
p
:
Prop: Type
Prop
) {
Ξ²: Ξ± β†’ Prop
Ξ²
:
Ξ±: Sort u_1
Ξ±
β†’
Prop: Type
Prop
} [
Testable: Prop β†’ Type
Testable
(
NamedBinder: String β†’ Prop β†’ Prop
NamedBinder
var: String
var
(βˆ€
x: Ξ±
x
,
NamedBinder: String β†’ Prop β†’ Prop
NamedBinder
var: String
var
$
Ξ²: Ξ± β†’ Prop
Ξ²
x: Ξ±
x
β†’
p: Prop
p
))] :
Testable: Prop β†’ Type
Testable
(
NamedBinder: String β†’ Prop β†’ Prop
NamedBinder
var: String
var
(
NamedBinder: String β†’ Prop β†’ Prop
NamedBinder
var: String
var
(βˆƒ
x: Ξ±
x
,
Ξ²: Ξ± β†’ Prop
Ξ²
x: Ξ±
x
) β†’
p: Prop
p
)) where run := Ξ»
cfg: Configuration
cfg
min: Bool
min
=> do let
x: TestResult (NamedBinder var (βˆ€ (x : Ξ±), NamedBinder var (Ξ² x β†’ p)))
x
←
Testable.runProp: (p : Prop) β†’ [inst : Testable p] β†’ Configuration β†’ Bool β†’ Gen (TestResult p)
Testable.runProp
(
NamedBinder: String β†’ Prop β†’ Prop
NamedBinder
var: String
var
(βˆ€
x: Ξ±
x
,
NamedBinder: String β†’ Prop β†’ Prop
NamedBinder
var: String
var
$
Ξ²: Ξ± β†’ Prop
Ξ²
x: Ξ±
x
β†’
p: Prop
p
))
cfg: Configuration
cfg
min: Bool
min
pure: {f : Type β†’ Type} β†’ [self : Pure f] β†’ {Ξ± : Type} β†’ Ξ± β†’ f Ξ±
pure
$
SlimCheck.TestResult.iff: {p q : Prop} β†’ (q ↔ p) β†’ TestResult p β†’ TestResult q
SlimCheck.TestResult.iff
exists_imp: βˆ€ {Ξ± : Sort u_1} {p : Ξ± β†’ Prop} {b : Prop}, (βˆƒ x, p x) β†’ b ↔ βˆ€ (x : Ξ±), p x β†’ b
exists_imp
x: TestResult (NamedBinder var (βˆ€ (x : Ξ±), NamedBinder var (Ξ² x β†’ p)))
x

Goals accomplished! πŸ™
(βˆ€ (
x: β„•
x
y: β„•
y
:
Nat: Type
Nat
),
x: β„•
x
+
y: β„•
y
=
y: β„•
y
+
x: β„•
x
) lemma
ex1: βˆ€ (v : β„• Γ— β„•), v.1 + v.2 = v.2 + v.1
ex1
: βˆ€ (
v: β„• Γ— β„•
v
:
Nat: Type
Nat
Γ—
Nat: Type
Nat
),
v: β„• Γ— β„•
v
.
1: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ±
1
+
v: β„• Γ— β„•
v
.
2: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ²
2
=
v: β„• Γ— β„•
v
.
2: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ²
2
+
v: β„• Γ— β„•
v
.
1: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ±
1
:=

Goals accomplished! πŸ™

Goals accomplished! πŸ™
lemma
ex2: βˆ€ (v : β„• Γ— β„•), v.1 + v.2 β‰  v.2 + v.1 β†’ false = true
ex2
: βˆ€ (
v: β„• Γ— β„•
v
:
Nat: Type
Nat
Γ—
Nat: Type
Nat
),
v: β„• Γ— β„•
v
.
1: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ±
1
+
v: β„• Γ— β„•
v
.
2: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ²
2
β‰ 
v: β„• Γ— β„•
v
.
2: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ²
2
+
v: β„• Γ— β„•
v
.
1: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ±
1
β†’
false: Bool
false
:=

Goals accomplished! πŸ™
h: β„• Γ— β„•

h.1 + h.2 β‰  h.2 + h.1 β†’ false = true
Try this: simp only [ne_eq, Bool.false_eq_true, imp_false, Decidable.not_not]
h: β„• Γ— β„•

h.1 + h.2 = h.2 + h.1
Try this: exact ex1 h

Goals accomplished! πŸ™

Goals accomplished! πŸ™
(βˆ€ (
v: β„• Γ— β„•
v
:
Nat: Type
Nat
Γ—
Nat: Type
Nat
),
v: β„• Γ— β„•
v
.
1: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ±
1
+
v: β„• Γ— β„•
v
.
2: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ²
2
β‰ 
v: β„• Γ— β„•
v
.
2: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ²
2
+
v: β„• Γ— β„•
v
.
1: {Ξ± Ξ² : Type} β†’ Ξ± Γ— Ξ² β†’ Ξ±
1
β†’
false: Bool
false
) -- set_option trace.Meta.synthInstance true in -- #eval SlimCheck.Testable.check (βˆƒ (v : Nat Γ— Nat), v.1 + v.2 β‰  v.2 + v.1 β†’ false) lemma
ex'': βˆ€ (x y : β„•), x + y = y + x
ex''
: βˆ€ (
x: β„•
x
y: β„•
y
:
Nat: Type
Nat
),
x: β„•
x
+
y: β„•
y
=
y: β„•
y
+
x: β„•
x
:=

Goals accomplished! πŸ™

Goals accomplished! πŸ™
example: (βˆƒ x y, x + y β‰  y + x) β†’ false = true
example
: (βˆƒ (
x: β„•
x
y: β„•
y
:
Nat: Type
Nat
),
x: β„•
x
+
y: β„•
y
β‰ 
y: β„•
y
+
x: β„•
x
) β†’
false: Bool
false
:=

Goals accomplished! πŸ™
h: βˆƒ x y, x + y β‰  y + x

false = true
x, y: β„•
h: x + y β‰  y + x

intro.intro
false = true
x, y: β„•
h: x + y β‰  y + x
h': x + y = y + x

intro.intro
false = true

Goals accomplished! πŸ™