Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
Hover-Settings: Show types: Show goals:
-- import Batteries.Tactic.Rcases
-- import Mathlib.Tactic.Cases
-- import Mathlib.Tactic.Use
import Mathlib.Logic.Basic
import Mathlib.Tactic.Cases
import Mathlib.Tactic.Use

-- https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/rcases.20vs.20cases

-- ## Understanding `rintro` for 1 pattern

-- using `rintro`
example (p: Nat  Prop) : ( a, p a)  ( b, p b)  ( c, p c) := 

Goals accomplished! 🐙
p: Prop

( b, p b) ( b, p b) c, p c
Warning: unused variable `b` note: this linter can be disabled with `set_option linter.unusedVariables false`
p: Prop

( b, p b) ( b, p b) c, p c
p: Prop

( b, p b) ( b, p b) c, p c
, : ∃ b, p b
Warning: unused variable `hb` note: this linter can be disabled with `set_option linter.unusedVariables false`
p: Prop

( b, p b) ( b, p b) c, p c
p: Prop
a:
ha: p a
b:
hb: p b

intro.intro
c, p c

Goals accomplished! 🐙
-- break `rintro` into `intro`s and `obtain`s example (p: Nat Prop) : ( a, p a) ( b, p b) ( c, p c) :=

Goals accomplished! 🐙
p: Prop
h1: a, p a

( b, p b) c, p c
p: Prop
h1, h2: b, p b

c, p c
p: Prop
h2: b, p b
a:
ha: p a

intro
c, p c
p: Prop
h2: b, p b
a:
ha: p a

intro
c, p c
Warning: unused variable `b` note: this linter can be disabled with `set_option linter.unusedVariables false`
p: Prop
h2: b, p b
a:
ha: p a

intro
c, p c
p: Prop
h2: b, p b
a:
ha: p a

intro
c, p c
, : ∃ b, p b
Warning: unused variable `hb` note: this linter can be disabled with `set_option linter.unusedVariables false`
p: Prop
h2: b, p b
a:
ha: p a

intro
c, p c
p: Prop
a:
ha: p a
b:
hb: p b

intro.intro
c, p c

Goals accomplished! 🐙
-- rewrite `obtain` to `cases'` example (p: Nat Prop) : ( a, p a) ( b, p b) ( c, p c) :=

Goals accomplished! 🐙
p: Prop
h1: a, p a

( b, p b) c, p c
p: Prop
h1, h2: b, p b

c, p c
p: Prop
h2: b, p b
a:
ha: p a

intro
c, p c
p: Prop
a✝:
ha✝: p a
a:
ha: p a

intro.intro
c, p c

Goals accomplished! 🐙
-- ## Understanding `rintro` for 1+ patterns -- using `rintro` example (p: Nat Nat Prop) : ( a, ( b, p a b)) ( c, ( d, p c d)) :=

Goals accomplished! 🐙
p: Prop
a, b:
hb: p a b

intro.intro
c d, p c d
p: Prop
a, b:
hb: p a b

h
d, p a d

Goals accomplished! 🐙
-- break `rintro` into `intro`s and `cases'`s example (p: Nat Nat Prop) : ( a, ( b, p a b)) ( c, ( d, p c d)) :=

Goals accomplished! 🐙
p: Prop
h: a b, p a b

c d, p c d
p: Prop
a:
ha: b, p a b

intro
c d, p c d
p: Prop
a, b:
hb: p a b

intro.intro
c d, p c d
p: Prop
a, b:
hb: p a b

h
d, p a d

Goals accomplished! 🐙
-- collapse `cases'`s into a single `rcases` example (p: Nat Nat Prop) : ( a, ( b, p a b)) ( c, ( d, p c d)) :=

Goals accomplished! 🐙
p: Prop
h: a b, p a b

c d, p c d
p: Prop
a, b:
hb: p a b

intro.intro
c d, p c d
p: Prop
a, b:
hb: p a b

h
d, p a d

Goals accomplished! 🐙
-- rewrite `rcases` to `obtain` then look at `rintro` above again example (p: Nat Nat Prop) : ( a, ( b, p a b)) ( c, ( d, p c d)) :=

Goals accomplished! 🐙
p: Prop
h: a b, p a b

c d, p c d
p: Prop
a, b:
hb: p a b

intro.intro
c d, p c d
p: Prop
a, b:
hb: p a b

h
d, p a d

Goals accomplished! 🐙
namespace Foo
eq_or_ne.{u_1} : Sort u_1} (x y : α) : x = y x y
eq_or_ne: ∀ {α : Sort u_1} (x y : α), x = y ∨ x ≠ y
eq_or_ne
variable (
p: Prop
p
q: Prop
q
r: Prop
r
:
Prop: Type
Prop
)
example: ∀ (p q : Prop), p ∨ q → q ∨ p
example
(
h: p ∨ q
h
:
p: Prop
p
q: Prop
q
) :
q: Prop
q
p: Prop
p
:=

Goals accomplished! 🐙
p, q, r: Prop
hp: p

inl
q p
p, q, r: Prop
hq: q
q p
p, q, r: Prop
hp: p

inl
q p

Goals accomplished! 🐙
p, q, r: Prop
hq: q

inr
q p

Goals accomplished! 🐙
example: ∀ (p q : Prop), p ∧ q → q ∧ p
example
(
h: p ∧ q
h
:
p: Prop
p
q: Prop
q
) :
q: Prop
q
p: Prop
p
:=

Goals accomplished! 🐙
p, q, r: Prop
hp: p
hq: q

intro
q p

Goals accomplished! 🐙
example: ∀ (p q r : Prop), (p ∨ q) ∧ r → r ∧ (q ∨ p)
example
(
h: (p ∨ q) ∧ r
h
: (
p: Prop
p
q: Prop
q
)
r: Prop
r
) :
r: Prop
r
(
q: Prop
q
p: Prop
p
) :=

Goals accomplished! 🐙
p, q, r: Prop
hr: r
hp: p

intro.inl
r (q p)
p, q, r: Prop
hr: r
hq: q
r (q p)
p, q, r: Prop
hr: r
hp: p

intro.inl
r (q p)

Goals accomplished! 🐙
p, q, r: Prop
hr: r
hq: q

intro.inr
r (q p)

Goals accomplished! 🐙
example: ∀ (p q : Prop), p ∨ q → q ∨ p
example
(
h: p ∨ q
h
:
p: Prop
p
q: Prop
q
) :
q: Prop
q
p: Prop
p
:=

Goals accomplished! 🐙
p, q, r: Prop
h: p q

q p
p, q, r: Prop
h: p

inl
q p

Goals accomplished! 🐙
p, q, r: Prop
h: q

inr
q p

Goals accomplished! 🐙