Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+πŸ–±οΈ to focus. On Mac, use ⌘ instead of Ctrl.
Hover-Settings: Show types: Show goals:
/-

  From https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Ensuring.20naive.20purity

  Will revisit later

-/

-- def natFun : Nat β†’ ByteArray :=
--   IO.getRandomBytes 8 |>.run'

--   -- | k => match (IO.getRandomBytes 8 |>.run' ()) with
--   --   | some bytes => bytes.toUInt64BE!.toNat % 256
--   --   | none => k

-- -- #eval natFun 4

/-

type mismatch
  EStateM.set s
has type
  EStateM ?m.273 (?m.61 β†’ EStateM.Result ?m.60 ?m.61 ?m.61) PUnit : Type
but is expected to have type
  Id Unit : Type

-/
-- def ohNo : Unit := Id.run do
--   let s ← EStateM.get
--   IO.println "Oh no"
--   EStateM.set s

-- #eval ohNo



def anyway : IO Unit := do
  let 
Warning: unused variable `s` note: this linter can be disabled with `set_option linter.unusedVariables false`
←
EStateM.get: {Ξ΅ Οƒ : Type} β†’ EStateM Ξ΅ Οƒ Οƒ
EStateM.get
let
x: Nat
x
:= ← (Β·.
toUInt64BE!: ByteArray β†’ UInt64
toUInt64BE!
.
toNat: UInt64 β†’ Nat
toNat
% 256) <$>
IO.getRandomBytes: USize β†’ IO ByteArray
IO.getRandomBytes
8: USize
8
-- EStateM.set s let
y: Nat
y
:= ← (Β·.
toUInt64BE!: ByteArray β†’ UInt64
toUInt64BE!
.
toNat: UInt64 β†’ Nat
toNat
% 256) <$>
IO.getRandomBytes: USize β†’ IO ByteArray
IO.getRandomBytes
8: USize
8
-- EStateM.set s let
z: Nat
z
:= ← (Β·.
toUInt64BE!: ByteArray β†’ UInt64
toUInt64BE!
.
toNat: UInt64 β†’ Nat
toNat
% 256) <$>
IO.getRandomBytes: USize β†’ IO ByteArray
IO.getRandomBytes
8: USize
8
IO.println: {Ξ± : Type} β†’ [inst : ToString Ξ±] β†’ Ξ± β†’ IO Unit
IO.println
f!"{
x: Nat
x
} {
y: Nat
y
} {
z: Nat
z
}"
143 151 51
anyway: IO Unit
anyway
example: 1 + 1 = 2
example
:
1: Nat
1
+
1: Nat
1
=
2: Nat
2
:=

Goals accomplished! πŸ™

Goals accomplished! πŸ™

Goals accomplished! πŸ™
structure
Two: Type
Two
where
x: Two β†’ Nat
x
:
Nat: Type
Nat
property: βˆ€ (self : Two), self.x = 2
property
:
x: Nat
x
=
2: Nat
2
:= by decide def
a: Two
a
:
Two: Type
Two
:= {x :=
2: Nat
2
} def
b: Two
b
:=

Goals accomplished! πŸ™
2: Nat
2
def
c: Two
c
:
Two: Type
Two
:= ⟨
2: Nat
2
,
rfl: βˆ€ {Ξ± : Type} {a : Ξ±}, a = a
rfl
⟩ -- hope to omit rfl