Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+βCtrl+β to navigate, Ctrl+π±οΈ to focus. On Mac, use β instead of Ctrl. Hover-Settings: Show types: Show goals:
Set.range: {Ξ± : Type (max u_1 u_2)} β {ΞΉ : Type u_2} β (ΞΉ β Ξ±) β Set Ξ±
Set.range (
ΞΉ: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β (Q : QuadraticForm R M) β M ββ[R] CliffordAlgebra Q
ΞΉ
Q: QuadraticForm R M
Q):
Set: Type (max u_2 u_1) β Type (max u_2 u_1)
Set (
CliffordAlgebra: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β QuadraticForm R M β Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q)Λ£)
def
pinGroup: (Q : QuadraticForm R M) β Submonoid (CliffordAlgebra Q)
pinGroup (
Q: QuadraticForm R M
Q :
QuadraticForm: (R : Type u_1) β
(M : Type u_2) β [inst : CommSemiring R] β [inst_1 : AddCommMonoid M] β [inst : Module R M] β Type (max u_1 u_2)
QuadraticForm
R: Type u_1
R
M: Type u_2
M):
Submonoid: (M : Type (max u_2 u_1)) β [inst : MulOneClass M] β Type (max u_2 u_1)
Submonoid (
CliffordAlgebra: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β QuadraticForm R M β Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q):=
(
lipschitz: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β (Q : QuadraticForm R M) β Subgroup (CliffordAlgebra Q)Λ£
lipschitz
Q: QuadraticForm R M
Q).
toSubmonoid: {G : Type (max u_1 u_2)} β [inst : Group G] β Subgroup G β Submonoid G
toSubmonoid.
map: {M N : Type (max u_1 u_2)} β
[inst : MulOneClass M] β
[inst_1 : MulOneClass N] β
{F : Type (max u_1 u_2)} β [inst_2 : FunLike F M N] β [mc : MonoidHomClass F M N] β F β Submonoid M β Submonoid N
map (
Units.coeHom: (M : Type (max u_2 u_1)) β [inst : Monoid M] β MΛ£ β* M
Units.coeHom<|
CliffordAlgebra: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β QuadraticForm R M β Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q)β
unitary: (R : Type (max u_1 u_2)) β [inst : Monoid R] β [inst_1 : StarMul R] β Submonoid R
unitary
_: Type (max u_1 u_2)
_namespace pinGroup
theorem
Warning:declarationuses'sorry'
{
x: CliffordAlgebra Q
x :
CliffordAlgebra: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β QuadraticForm R M β Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q}(
hx: x β pinGroup Q
hx :
x: CliffordAlgebra Q
xβ
pinGroup: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β (Q : QuadraticForm R M) β Submonoid (CliffordAlgebra Q)
pinGroup
Q: QuadraticForm R M
Q):
star: {R : Type (max u_1 u_2)} β [self : Star R] β R β R
star
x: CliffordAlgebra Q
xβ
pinGroup: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β (Q : QuadraticForm R M) β Submonoid (CliffordAlgebra Q)
pinGroup
Q: QuadraticForm R M
Q :=
sorry: star x β pinGroup Q
sorry
instance: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β {Q : QuadraticForm R M} β Star β₯(pinGroup Q)
instance :
Star: Type (max u_1 u_2) β Type (max u_1 u_2)
Star (
pinGroup: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β (Q : QuadraticForm R M) β Submonoid (CliffordAlgebra Q)
pinGroup
Q: QuadraticForm R M
Q):=
β¨fun
x: β₯(pinGroup Q)
x=>β¨
star: {R : Type (max u_1 u_2)} β [self : Star R] β R β R
star
x: β₯(pinGroup Q)
x,
star_mem: β {R : Type u_1} [inst : CommRing R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M]
{Q : QuadraticForm R M} {x : CliffordAlgebra Q}, x β pinGroup Q β star x β pinGroup Q
star_mem
x: β₯(pinGroup Q)
x.
prop: β {Ξ± : Type (max u_1 u_2)} {p : Ξ± β Prop} (x : Subtype p), p βx
pinGroup: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β (Q : QuadraticForm R M) β Submonoid (CliffordAlgebra Q)
pinGroup
Q: QuadraticForm R M
Q}:β(
star: {R : Type (max u_1 u_2)} β [self : Star R] β R β R
star
x: β₯(pinGroup Q)
x)=(
star: {R : Type (max u_1 u_2)} β [self : Star R] β R β R
star
x: β₯(pinGroup Q)
x :
CliffordAlgebra: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β QuadraticForm R M β Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q):=
rfl: β {Ξ± : Type (max u_1 u_2)} {a : Ξ±}, a = a
rflset_option synthInstance.maxHeartbeats20038in
instance: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β {Q : QuadraticForm R M} β InvolutiveStar β₯(pinGroup Q)
instance :
InvolutiveStar: Type (max u_1 u_2) β Type (max u_1 u_2)
InvolutiveStar (
pinGroup: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β [inst_2 : Module R M] β (Q : QuadraticForm R M) β Submonoid (CliffordAlgebra Q)
pinGroup
Q: QuadraticForm R M
Q):=
β¨fun
_: β₯(pinGroup Q)
_=>
Goalsaccomplished!π
/- failed to synthesize (deterministic) timeout at 'typeclass', maximum number of heartbeats (20000) has been reached (use 'set_option synthInstance.maxHeartbeats <num>' to set the limit) -/