-- import Mathlib -- import Batteries.Data.Nat.Basic -- for ℕ and fixing -- tactic 'induction' failed, major premise type is not an inductive type import Mathlib.Data.Nat.Notation -- for induction import Batteries.Tactic.Init import Mathlib.Control.Traversable.Basic -- for #min_imports import ImportGraph.Imports -- import Mathlib -- https://leanprover.zulipchat.com/#narrow/stream/217875-Is-there-code-for-X.3F/topic/Agda.20style.20interactive.20case.20splitting.3F/near/424179379 -- def foo (n : Nat) : Nat := by -- induction n with -- Cmd+. => Code action: generate an explicit pattern match for 'induction' def(n :n: ℕℕ) :ℕ: Typeℕ :=ℕ: TypeGoals accomplished! 🐙n: ℕℕ
zeroℕGoals accomplished! 🐙n, ih: ℕ
succℕ-- #help tactic induction -- https://github.com/leanprover-community/batteries/pull/577 -- instance : Monad Id := _ -- Cmd+. => Code action: Generate a (maximal) skeleton for the structure under constructionGoals accomplished! 🐙:MonadMonad: (Type u_1 → Type u_1) → Type (u_1 + 1)Id where pure :=Id: Type u_1 → Type u_1sorry bind :=sorry: α✝ → Id α✝sorry -- https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/.60.23minimize_imports.60.20doesn't.20find.20notation.20importssorry: Id α✝ → (α✝ → Id β✝) → Id β✝NatNat: Typeℕ -- To use `shake`: -- lake build Playground.Zulip.CodeAction -- lake exe shake Playground.Zulip.CodeActionℕ: Type