Built with
Alectryon . Bubbles (
) indicate interactive fragments: hover for details, tap to reveal contents. Use
Ctrl+ā Ctrl+ā to navigate,
Ctrl+š±ļø to focus. On Mac, use
ā instead of
Ctrl .
Hover-Settings: Show types:
Show goals:
import Mathlib.CategoryTheory.Category.Basic
import Mathlib.CategoryTheory.IsomorphismClasses
import Mathlib.CategoryTheory.NatIso
#check Quiver. {v, u} (V : Type u) : Type (max u v) Quiver : Type u ā Type (max u v)
Quiver
universe u
variable { U : Type u} [ Quiver : Type u ā Type (max u ?u.5)
Quiver U ] ( a b : U ) in
#check a ā¶ b
#check CategoryTheory.isomorphismClasses. {v, u} : CategoryTheory.Functor CategoryTheory.Cat (Type u) CategoryTheory.isomorphismClasses : CategoryTheory.Functor CategoryTheory.Cat (Type u)
CategoryTheory.isomorphismClasses
#check CategoryTheory.NatIso.pi. {wā, vā, vā, uā, uā} {I : Type wā} {C : I ā Type uā}
[(i : I) ā CategoryTheory.Category. {vā, uā} (C i)] {D : I ā Type uā}
[(i : I) ā CategoryTheory.Category. {vā, uā} (D i)] {F G : (i : I) ā CategoryTheory.Functor (C i) (D i)}
(e : (i : I) ā F i ā
G i) : CategoryTheory.Functor.pi F ā
CategoryTheory.Functor.pi G CategoryTheory.NatIso.pi : {I : Type wā} ā
{C : I ā Type uā} ā
[inst : (i : I) ā CategoryTheory.Category.{vā, uā} (C i)] ā
{D : I ā Type uā} ā
[inst_1 : (i : I) ā CategoryTheory.Category.{vā, uā} (D i)] ā
{F G : (i : I) ā CategoryTheory.Functor (C i) (D i)} ā
((i : I) ā F i ā
G i) ā (CategoryTheory.Functor.pi F ā
CategoryTheory.Functor.pi G)
CategoryTheory.NatIso.pi
-- ā
#check CategoryTheory.Equivalence. {vā, vā, uā, uā} (C : Type uā) (D : Type uā) [CategoryTheory.Category. {vā, uā} C]
[CategoryTheory.Category. {vā, uā} D] : Type (max (max (max uā uā) vā) vā) CategoryTheory.Equivalence : (C : Type uā) ā
(D : Type uā) ā
[inst : CategoryTheory.Category.{vā, uā} C] ā
[inst : CategoryTheory.Category.{vā, uā} D] ā Type (max (max (max uā uā) vā) vā)
CategoryTheory.Equivalence
--This file should be redone following https://github.com/lftcm2023/lftcm2023/blob/master/LftCM/C10_Category_Theory/CategoryTheory.lean