Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+ā†‘ Ctrl+ā†“ to navigate, Ctrl+šŸ–±ļø to focus. On Mac, use āŒ˜ instead of Ctrl.
Hover-Settings: Show types: Show goals:
import Mathlib.CategoryTheory.Category.Basic
import Mathlib.CategoryTheory.IsomorphismClasses
import Mathlib.CategoryTheory.NatIso

Quiver.{v, u} (V : Type u) : Type (max u v)
Quiver: Type u ā†’ Type (max u v)
Quiver
universe u variable {
U: Type u
U
:
Type u: Type (u + 1)
Type u
} [
Quiver: Type u ā†’ Type (max u ?u.5)
Quiver
U: Type u
U
] (
a: U
a
b: U
b
:
U: Type u
U
) in
a āŸ¶ b : Sort u_1
a: U
a
āŸ¶
b: U
b
CategoryTheory.isomorphismClasses.{v, u} : CategoryTheory.Functor CategoryTheory.Cat (Type u)
CategoryTheory.isomorphismClasses: CategoryTheory.Functor CategoryTheory.Cat (Type u)
CategoryTheory.isomorphismClasses
CategoryTheory.NatIso.pi.{wā‚€, vā‚, vā‚‚, uā‚, uā‚‚} {I : Type wā‚€} {C : I ā†’ Type uā‚} [(i : I) ā†’ CategoryTheory.Category.{vā‚, uā‚} (C i)] {D : I ā†’ Type uā‚‚} [(i : I) ā†’ CategoryTheory.Category.{vā‚‚, uā‚‚} (D i)] {F G : (i : I) ā†’ CategoryTheory.Functor (C i) (D i)} (e : (i : I) ā†’ F i ā‰… G i) : CategoryTheory.Functor.pi F ā‰… CategoryTheory.Functor.pi G
CategoryTheory.NatIso.pi: {I : Type wā‚€} ā†’ {C : I ā†’ Type uā‚} ā†’ [inst : (i : I) ā†’ CategoryTheory.Category.{vā‚, uā‚} (C i)] ā†’ {D : I ā†’ Type uā‚‚} ā†’ [inst_1 : (i : I) ā†’ CategoryTheory.Category.{vā‚‚, uā‚‚} (D i)] ā†’ {F G : (i : I) ā†’ CategoryTheory.Functor (C i) (D i)} ā†’ ((i : I) ā†’ F i ā‰… G i) ā†’ (CategoryTheory.Functor.pi F ā‰… CategoryTheory.Functor.pi G)
CategoryTheory.NatIso.pi
-- ā‰Œ
CategoryTheory.Equivalence.{vā‚, vā‚‚, uā‚, uā‚‚} (C : Type uā‚) (D : Type uā‚‚) [CategoryTheory.Category.{vā‚, uā‚} C] [CategoryTheory.Category.{vā‚‚, uā‚‚} D] : Type (max (max (max uā‚ uā‚‚) vā‚) vā‚‚)
CategoryTheory.Equivalence: (C : Type uā‚) ā†’ (D : Type uā‚‚) ā†’ [inst : CategoryTheory.Category.{vā‚, uā‚} C] ā†’ [inst : CategoryTheory.Category.{vā‚‚, uā‚‚} D] ā†’ Type (max (max (max uā‚ uā‚‚) vā‚) vā‚‚)
CategoryTheory.Equivalence
--This file should be redone following https://github.com/lftcm2023/lftcm2023/blob/master/LftCM/C10_Category_Theory/CategoryTheory.lean