Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+πŸ–±οΈ to focus. On Mac, use ⌘ instead of Ctrl.
Hover-Settings: Show types: Show goals:
import Mathlib.LinearAlgebra.CliffordAlgebra.Contraction
import Mathlib.LinearAlgebra.ExteriorAlgebra.Grading

set_option pp.proofs.withType false

variable {
R: Type ?u.29790
R
M: Type u_2
M
} [
CommRing: Type ?u.29790 β†’ Type ?u.29790
CommRing
R: Type ?u.45601
R
] [
Invertible: {Ξ± : Type ?u.8} β†’ [inst : Mul Ξ±] β†’ [inst : One Ξ±] β†’ Ξ± β†’ Type ?u.8
Invertible
(
2: R
2
:
R: Type ?u.29790
R
)] [
AddCommGroup: Type u_2 β†’ Type u_2
AddCommGroup
M: Type ?u.679
M
] [
Module: (R : Type u_1) β†’ (M : Type u_2) β†’ [inst : Semiring R] β†’ [inst : AddCommMonoid M] β†’ Type (max u_1 u_2)
Module
R: Type ?u.8
R
M: Type ?u.679
M
] (
Q: QuadraticForm R M
Q
:
QuadraticForm: (R : Type ?u.8) β†’ (M : Type ?u.679) β†’ [inst : CommSemiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst : Module R M] β†’ Type (max ?u.8 ?u.679)
QuadraticForm
R: Type u_1
R
M: Type ?u.679
M
) abbrev
ExteriorAlgebra.rMultivector: β„• β†’ Submodule R (ExteriorAlgebra R M)
ExteriorAlgebra.rMultivector
(
r: β„•
r
:
β„•: Type
β„•
) :
Submodule: (R : Type u_1) β†’ (M : Type (max u_2 u_1)) β†’ [inst : Semiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst : Module R M] β†’ Type (max u_2 u_1)
Submodule
R: Type u_1
R
(
ExteriorAlgebra: (R : Type u_1) β†’ [inst : CommRing R] β†’ (M : Type u_2) β†’ [inst_1 : AddCommGroup M] β†’ [inst : Module R M] β†’ Type (max u_2 u_1)
ExteriorAlgebra
R: Type u_1
R
M: Type u_2
M
) := (
LinearMap.range: {R Rβ‚‚ : Type u_1} β†’ {M : Type u_2} β†’ {Mβ‚‚ : Type (max u_1 u_2)} β†’ [inst : Semiring R] β†’ [inst_1 : Semiring Rβ‚‚] β†’ [inst_2 : AddCommMonoid M] β†’ [inst_3 : AddCommMonoid Mβ‚‚] β†’ [inst_4 : Module R M] β†’ [inst_5 : Module Rβ‚‚ Mβ‚‚] β†’ {τ₁₂ : R β†’+* Rβ‚‚} β†’ {F : Type (max u_1 u_2)} β†’ [inst_6 : FunLike F M Mβ‚‚] β†’ [inst_7 : SemilinearMapClass F τ₁₂ M Mβ‚‚] β†’ [inst : RingHomSurjective τ₁₂] β†’ F β†’ Submodule Rβ‚‚ Mβ‚‚
LinearMap.range
(
ExteriorAlgebra.ΞΉ: (R : Type u_1) β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ M β†’β‚—[R] ExteriorAlgebra R M
ExteriorAlgebra.ΞΉ
R: Type u_1
R
:
M: Type u_2
M
β†’β‚—[
R: Type u_1
R
]
_: Type (max u_1 u_2)
_
) ^
r: β„•
r
) -- def ExteriorAlgebra.proj (mv : ExteriorAlgebra R M) (r : β„•) : ExteriorAlgebra R M := -- @GradedAlgebra.proj β„• R (ExteriorAlgebra R M) _ _ _ _ _ ExteriorAlgebra.rMultivector _ r mv -- def ExteriorAlgebra.proj' (mv : ExteriorAlgebra R M) (r : β„•) : ExteriorAlgebra R M := -- GradedAlgebra.proj ExteriorAlgebra.rMultivector r mv namespace CliffordAlgebra abbrev
rMultivector: β„• β†’ Submodule R (CliffordAlgebra Q)
rMultivector
(
r: β„•
r
:
β„•: Type
β„•
) :
Submodule: (R : Type u_1) β†’ (M : Type (max u_2 u_1)) β†’ [inst : Semiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst : Module R M] β†’ Type (max u_2 u_1)
Submodule
R: Type u_1
R
(
CliffordAlgebra: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ QuadraticForm R M β†’ Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q
) := (
ExteriorAlgebra.rMultivector: {R : Type u_1} β†’ {M : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ β„• β†’ Submodule R (ExteriorAlgebra R M)
ExteriorAlgebra.rMultivector
r: β„•
r
).
comap: {R Rβ‚‚ : Type u_1} β†’ {M : Type (max u_1 u_2)} β†’ {Mβ‚‚ : Type (max u_2 u_1)} β†’ [inst : Semiring R] β†’ [inst_1 : Semiring Rβ‚‚] β†’ [inst_2 : AddCommMonoid M] β†’ [inst_3 : AddCommMonoid Mβ‚‚] β†’ [inst_4 : Module R M] β†’ [inst_5 : Module Rβ‚‚ Mβ‚‚] β†’ {σ₁₂ : R β†’+* Rβ‚‚} β†’ {F : Type (max u_1 u_2)} β†’ [inst_6 : FunLike F M Mβ‚‚] β†’ [inst_7 : SemilinearMapClass F σ₁₂ M Mβ‚‚] β†’ F β†’ Submodule Rβ‚‚ Mβ‚‚ β†’ Submodule R M
comap
(
CliffordAlgebra.equivExterior: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ (Q : QuadraticForm R M) β†’ [inst_3 : Invertible 2] β†’ CliffordAlgebra Q ≃ₗ[R] ExteriorAlgebra R M
CliffordAlgebra.equivExterior
Q: QuadraticForm R M
Q
) abbrev
ofGrade: {r : β„•} β†’ β†₯(rMultivector Q r) β†’ CliffordAlgebra Q
ofGrade
{
r: β„•
r
:
β„•: Type
β„•
} (
mv: β†₯(rMultivector Q r)
mv
:
rMultivector: {R : Type u_1} β†’ {M : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : Invertible 2] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ (Q : QuadraticForm R M) β†’ β„• β†’ Submodule R (CliffordAlgebra Q)
rMultivector
Q: QuadraticForm R M
Q
r: β„•
r
) :
CliffordAlgebra: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ QuadraticForm R M β†’ Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q
:=
mv: β†₯(rMultivector Q r)
mv
variable {Q} in def
wedge: {R : Type u_1} β†’ {M : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : Invertible 2] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ {Q : QuadraticForm R M} β†’ CliffordAlgebra Q β†’ CliffordAlgebra Q β†’ CliffordAlgebra Q
wedge
(
a: CliffordAlgebra Q
a
b: CliffordAlgebra Q
b
:
CliffordAlgebra: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ QuadraticForm R M β†’ Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q
) :
CliffordAlgebra: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ QuadraticForm R M β†’ Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q
:= (
equivExterior: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ (Q : QuadraticForm R M) β†’ [inst_3 : Invertible 2] β†’ CliffordAlgebra Q ≃ₗ[R] ExteriorAlgebra R M
equivExterior
Q: QuadraticForm R M
Q
).
symm: {R S : Type u_1} β†’ {M Mβ‚‚ : Type (max u_1 u_2)} β†’ [inst : Semiring R] β†’ [inst_1 : Semiring S] β†’ [inst_2 : AddCommMonoid M] β†’ [inst_3 : AddCommMonoid Mβ‚‚] β†’ {module_M : Module R M} β†’ {module_S_Mβ‚‚ : Module S Mβ‚‚} β†’ {Οƒ : R β†’+* S} β†’ {Οƒ' : S β†’+* R} β†’ {re₁ : RingHomInvPair Οƒ Οƒ'} β†’ {reβ‚‚ : RingHomInvPair Οƒ' Οƒ} β†’ (M ≃ₛₗ[Οƒ] Mβ‚‚) β†’ Mβ‚‚ ≃ₛₗ[Οƒ'] M
symm
(
equivExterior: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ (Q : QuadraticForm R M) β†’ [inst_3 : Invertible 2] β†’ CliffordAlgebra Q ≃ₗ[R] ExteriorAlgebra R M
equivExterior
Q: QuadraticForm R M
Q
a: CliffordAlgebra Q
a
*
equivExterior: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ (Q : QuadraticForm R M) β†’ [inst_3 : Invertible 2] β†’ CliffordAlgebra Q ≃ₗ[R] ExteriorAlgebra R M
equivExterior
Q: QuadraticForm R M
Q
b: CliffordAlgebra Q
b
) infix:65 " ⋏ " =>
wedge: {R : Type u_1} β†’ {M : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : Invertible 2] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ {Q : QuadraticForm R M} β†’ CliffordAlgebra Q β†’ CliffordAlgebra Q β†’ CliffordAlgebra Q
wedge
variable (
r: β„•
r
:
β„•: Type
β„•
) (
mv: CliffordAlgebra Q
mv
:
CliffordAlgebra: {R : Type ?u.52419} β†’ [inst : CommRing R] β†’ {M : Type ?u.53090} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ QuadraticForm R M β†’ Type (max ?u.53090 ?u.52419)
CliffordAlgebra
Q: QuadraticForm R M
Q
) in
(equivExterior Q) mv : ExteriorAlgebra R M
equivExterior: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ (Q : QuadraticForm R M) β†’ [inst_3 : Invertible 2] β†’ CliffordAlgebra Q ≃ₗ[R] ExteriorAlgebra R M
equivExterior
Q: QuadraticForm R M
Q
mv: CliffordAlgebra Q
mv
-- def proj (mv : CliffordAlgebra Q) (i : β„•) : CliffordAlgebra Q := (equivExterior Q).symm ((equivExterior Q mv).proj i) -- #check proj theorem
wedge_mv_mem: βˆ€ {ra rb : β„•} (a : β†₯(rMultivector Q ra)) (b : β†₯(rMultivector Q rb)), ↑a ⋏ ↑b ∈ rMultivector Q (ra + rb)
wedge_mv_mem
{
ra: β„•
ra
rb: β„•
rb
} (
a: β†₯(rMultivector Q ra)
a
:
rMultivector: {R : Type u_1} β†’ {M : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : Invertible 2] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ (Q : QuadraticForm R M) β†’ β„• β†’ Submodule R (CliffordAlgebra Q)
rMultivector
Q: QuadraticForm R M
Q
ra: β„•
ra
) (
b: β†₯(rMultivector Q rb)
b
:
rMultivector: {R : Type u_1} β†’ {M : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : Invertible 2] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ (Q : QuadraticForm R M) β†’ β„• β†’ Submodule R (CliffordAlgebra Q)
rMultivector
Q: QuadraticForm R M
Q
rb: β„•
rb
) :
a: β†₯(rMultivector Q ra)
a
⋏
b: β†₯(rMultivector Q rb)
b
∈
rMultivector: {R : Type u_1} β†’ {M : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : Invertible 2] β†’ [inst_2 : AddCommGroup M] β†’ [inst_3 : Module R M] β†’ (Q : QuadraticForm R M) β†’ β„• β†’ Submodule R (CliffordAlgebra Q)
rMultivector
Q: QuadraticForm R M
Q
(
ra: β„•
ra
+
rb: β„•
rb
) :=

Goals accomplished! πŸ™
R: Type u_1
M: Type u_2
inst✝³: CommRing R
inst✝²: Invertible 2
inst✝¹: AddCommGroup M
inst✝: Module R M
Q: QuadraticForm R M
ra, rb: β„•
b: β†₯(rMultivector Q rb)
a: CliffordAlgebra Q
ha: a ∈ rMultivector Q ra

mk
β†‘βŸ¨a, ha⟩ ⋏ ↑b ∈ rMultivector Q (ra + rb)
R: Type u_1
M: Type u_2
inst✝³: CommRing R
inst✝²: Invertible 2
inst✝¹: AddCommGroup M
inst✝: Module R M
Q: QuadraticForm R M
ra, rb: β„•
a: CliffordAlgebra Q
ha: a ∈ rMultivector Q ra
b: CliffordAlgebra Q
hb: b ∈ rMultivector Q rb

mk.mk
β†‘βŸ¨a, ha⟩ ⋏ β†‘βŸ¨b, hb⟩ ∈ rMultivector Q (ra + rb)
R: Type u_1
M: Type u_2
inst✝³: CommRing R
inst✝²: Invertible 2
inst✝¹: AddCommGroup M
inst✝: Module R M
Q: QuadraticForm R M
ra, rb: β„•
a: CliffordAlgebra Q
ha: a ∈ rMultivector Q ra
b: CliffordAlgebra Q
hb: b ∈ rMultivector Q rb

mk.mk
(equivExterior Q) a * (equivExterior Q) b ∈ ExteriorAlgebra.rMultivector (ra + rb)
R: Type u_1
M: Type u_2
inst✝³: CommRing R
inst✝²: Invertible 2
inst✝¹: AddCommGroup M
inst✝: Module R M
Q: QuadraticForm R M
ra, rb: β„•
a: CliffordAlgebra Q
ha: a ∈ rMultivector Q ra
b: CliffordAlgebra Q
hb: b ∈ rMultivector Q rb

mk.mk.hi
(equivExterior Q) a ∈ ExteriorAlgebra.rMultivector ra
R: Type u_1
M: Type u_2
inst✝³: CommRing R
inst✝²: Invertible 2
inst✝¹: AddCommGroup M
inst✝: Module R M
Q: QuadraticForm R M
ra, rb: β„•
a: CliffordAlgebra Q
ha: a ∈ rMultivector Q ra
b: CliffordAlgebra Q
hb: b ∈ rMultivector Q rb
(equivExterior Q) b ∈ ExteriorAlgebra.rMultivector rb
R: Type u_1
M: Type u_2
inst✝³: CommRing R
inst✝²: Invertible 2
inst✝¹: AddCommGroup M
inst✝: Module R M
Q: QuadraticForm R M
ra, rb: β„•
a: CliffordAlgebra Q
ha: a ∈ rMultivector Q ra
b: CliffordAlgebra Q
hb: b ∈ rMultivector Q rb

mk.mk.hi
(equivExterior Q) a ∈ ExteriorAlgebra.rMultivector ra
R: Type u_1
M: Type u_2
inst✝³: CommRing R
inst✝²: Invertible 2
inst✝¹: AddCommGroup M
inst✝: Module R M
Q: QuadraticForm R M
ra, rb: β„•
a: CliffordAlgebra Q
ha: a ∈ rMultivector Q ra
b: CliffordAlgebra Q
hb: b ∈ rMultivector Q rb
(equivExterior Q) b ∈ ExteriorAlgebra.rMultivector rb

Goals accomplished! πŸ™
-- lemma outer_homo {i j} (u : rMultivector Q i) (v : rMultivector Q j) : -- u ⋏ v = proj Q (u * v) (i + j) := sorry end CliffordAlgebra