Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+βCtrl+β to navigate, Ctrl+π±οΈ to focus. On Mac, use β instead of Ctrl. Hover-Settings: Show types: Show goals:
Invertible: {Ξ± : Type ?u.8} β [inst : Mul Ξ±] β [inst : One Ξ±] β Ξ± β Type ?u.8
Invertible (
2: R
2 :
R: Type ?u.29790
R)][
AddCommGroup: Type u_2 β Type u_2
AddCommGroup
M: Type ?u.679
M][
Module: (R : Type u_1) β (M : Type u_2) β [inst : Semiring R] β [inst : AddCommMonoid M] β Type (max u_1 u_2)
Module
R: Type ?u.8
R
M: Type ?u.679
M](
Q: QuadraticForm R M
Q :
QuadraticForm: (R : Type ?u.8) β
(M : Type ?u.679) β
[inst : CommSemiring R] β [inst_1 : AddCommMonoid M] β [inst : Module R M] β Type (max ?u.8 ?u.679)
QuadraticForm
R: Type u_1
R
M: Type ?u.679
M)
abbrev
ExteriorAlgebra.rMultivector: β β Submodule R (ExteriorAlgebra R M)
ExteriorAlgebra.rMultivector (
r: β
r :
β: Type
β):
Submodule: (R : Type u_1) β
(M : Type (max u_2 u_1)) β [inst : Semiring R] β [inst_1 : AddCommMonoid M] β [inst : Module R M] β Type (max u_2 u_1)
Submodule
R: Type u_1
R (
ExteriorAlgebra: (R : Type u_1) β
[inst : CommRing R] β (M : Type u_2) β [inst_1 : AddCommGroup M] β [inst : Module R M] β Type (max u_2 u_1)
ExteriorAlgebra
R: Type u_1
R
M: Type u_2
M):=
(
LinearMap.range: {R Rβ : Type u_1} β
{M : Type u_2} β
{Mβ : Type (max u_1 u_2)} β
[inst : Semiring R] β
[inst_1 : Semiring Rβ] β
[inst_2 : AddCommMonoid M] β
[inst_3 : AddCommMonoid Mβ] β
[inst_4 : Module R M] β
[inst_5 : Module Rβ Mβ] β
{Οββ : R β+* Rβ} β
{F : Type (max u_1 u_2)} β
[inst_6 : FunLike F M Mβ] β
[inst_7 : SemilinearMapClass F Οββ M Mβ] β [inst : RingHomSurjective Οββ] β F β Submodule Rβ Mβ
LinearMap.range (
ExteriorAlgebra.ΞΉ: (R : Type u_1) β
[inst : CommRing R] β {M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β M ββ[R] ExteriorAlgebra R M
ExteriorAlgebra.ΞΉ
R: Type u_1
R :
M: Type u_2
Mββ[
R: Type u_1
R]
_: Type (max u_1 u_2)
_)^
r: β
r)
-- def ExteriorAlgebra.proj (mv : ExteriorAlgebra R M) (r : β) : ExteriorAlgebra R M :=-- @GradedAlgebra.proj β R (ExteriorAlgebra R M) _ _ _ _ _ ExteriorAlgebra.rMultivector _ r mv-- def ExteriorAlgebra.proj' (mv : ExteriorAlgebra R M) (r : β) : ExteriorAlgebra R M :=-- GradedAlgebra.proj ExteriorAlgebra.rMultivector r mvnamespace CliffordAlgebra
abbrev
rMultivector: β β Submodule R (CliffordAlgebra Q)
rMultivector (
r: β
r :
β: Type
β):
Submodule: (R : Type u_1) β
(M : Type (max u_2 u_1)) β [inst : Semiring R] β [inst_1 : AddCommMonoid M] β [inst : Module R M] β Type (max u_2 u_1)
Submodule
R: Type u_1
R (
CliffordAlgebra: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β QuadraticForm R M β Type (max u_2 u_1)
CliffordAlgebra
Q: QuadraticForm R M
Q):=
(
ExteriorAlgebra.rMultivector: {R : Type u_1} β
{M : Type u_2} β
[inst : CommRing R] β [inst_1 : AddCommGroup M] β [inst_2 : Module R M] β β β Submodule R (ExteriorAlgebra R M)
ExteriorAlgebra.rMultivector
r: β
r).
comap: {R Rβ : Type u_1} β
{M : Type (max u_1 u_2)} β
{Mβ : Type (max u_2 u_1)} β
[inst : Semiring R] β
[inst_1 : Semiring Rβ] β
[inst_2 : AddCommMonoid M] β
[inst_3 : AddCommMonoid Mβ] β
[inst_4 : Module R M] β
[inst_5 : Module Rβ Mβ] β
{Οββ : R β+* Rβ} β
{F : Type (max u_1 u_2)} β
[inst_6 : FunLike F M Mβ] β
[inst_7 : SemilinearMapClass F Οββ M Mβ] β F β Submodule Rβ Mβ β Submodule R M
comap (
CliffordAlgebra.equivExterior: {R : Type u_1} β
[inst : CommRing R] β
{M : Type u_2} β
[inst_1 : AddCommGroup M] β
[inst_2 : Module R M] β
(Q : QuadraticForm R M) β [inst_3 : Invertible 2] β CliffordAlgebra Q ββ[R] ExteriorAlgebra R M