Built with Alectryon. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+πŸ–±οΈ to focus. On Mac, use ⌘ instead of Ctrl.
Hover-Settings: Show types: Show goals:
import Mathlib.Tactic
import Mathlib.LinearAlgebra.CliffordAlgebra.Basic
import Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
import Mathlib.Data.Matrix.Notation
import Mathlib.Algebra.Free

-- set_option trace.Meta.synthInstance true
-- set_option synthInstance.checkSynthOrder false

Monoid.mk.{u} {M : Type u} [toSemigroup : Semigroup M] [toOne : One M] (one_mul : βˆ€ (a : M), 1 * a = a) (mul_one : βˆ€ (a : M), a * 1 = a) (npow : β„• β†’ M β†’ M) (npow_zero : βˆ€ (x : M), npow 0 x = 1 := by intros; rfl) (npow_succ : βˆ€ (n : β„•) (x : M), npow (n + 1) x = npow n x * x := by intros; rfl) : Monoid M
Monoid.mk: {M : Type u} β†’ [toSemigroup : Semigroup M] β†’ [toOne : One M] β†’ (βˆ€ (a : M), 1 * a = a) β†’ (βˆ€ (a : M), a * 1 = a) β†’ (npow : β„• β†’ M β†’ M) β†’ autoParam (βˆ€ (x : M), npow 0 x = 1) _auto✝ β†’ autoParam (βˆ€ (n : β„•) (x : M), npow (n + 1) x = npow n x * x) _auto✝¹ β†’ Monoid M
Monoid.mk
no new constants
no new constants

Goals accomplished! πŸ™
no new constants

Goals accomplished! πŸ™
AddCommGroup.toIntModule β„€
RingHomClass.mk.{u_5, u_6, u_7} {F : Type u_5} {Ξ± : outParam (Type u_6)} {Ξ² : outParam (Type u_7)} [NonAssocSemiring Ξ±] [NonAssocSemiring Ξ²] [FunLike F Ξ± Ξ²] [toMonoidHomClass : MonoidHomClass F Ξ± Ξ²] [toAddMonoidHomClass : AddMonoidHomClass F Ξ± Ξ²] : RingHomClass F Ξ± Ξ²
RingHomClass.mk: βˆ€ {F : Type u_5} {Ξ± : outParam (Type u_6)} {Ξ² : outParam (Type u_7)} [inst : NonAssocSemiring Ξ±] [inst_1 : NonAssocSemiring Ξ²] [inst_2 : FunLike F Ξ± Ξ²] [toMonoidHomClass : MonoidHomClass F Ξ± Ξ²] [toAddMonoidHomClass : AddMonoidHomClass F Ξ± Ξ²], RingHomClass F Ξ± Ξ²
RingHomClass.mk
-- map_add, map_zero, toMonoidHomClass
MonoidHomClass.mk.{u_10, u_11, u_12} {F : Type u_10} {M : outParam (Type u_11)} {N : outParam (Type u_12)} [MulOneClass M] [MulOneClass N] [FunLike F M N] [toMulHomClass : MulHomClass F M N] [toOneHomClass : OneHomClass F M N] : MonoidHomClass F M N
MonoidHomClass.mk: βˆ€ {F : Type u_10} {M : outParam (Type u_11)} {N : outParam (Type u_12)} [inst : MulOneClass M] [inst_1 : MulOneClass N] [inst_2 : FunLike F M N] [toMulHomClass : MulHomClass F M N] [toOneHomClass : OneHomClass F M N], MonoidHomClass F M N
MonoidHomClass.mk
-- map_one, toMulHomClass
MulHomClass.mk.{u_10, u_11, u_12} {F : Type u_10} {M : outParam (Type u_11)} {N : outParam (Type u_12)} [Mul M] [Mul N] [FunLike F M N] (map_mul : βˆ€ (f : F) (x y : M), f (x * y) = f x * f y) : MulHomClass F M N
MulHomClass.mk: βˆ€ {F : Type u_10} {M : outParam (Type u_11)} {N : outParam (Type u_12)} [inst : Mul M] [inst_1 : Mul N] [inst_2 : FunLike F M N], (βˆ€ (f : F) (x y : M), f (x * y) = f x * f y) β†’ MulHomClass F M N
MulHomClass.mk
-- map_mul, toFunLike
FunLike.{u_1, u_2, u_3} (F : Sort u_1) (Ξ± : Sort u_2) (Ξ² : Sort u_3) : Sort (max (max (max 1 u_1) u_2) u_3)
FunLike: Sort u_1 β†’ Sort u_2 β†’ Sort u_3 β†’ Sort (max (max (max 1 u_1) u_2) u_3)
FunLike
-- #check FunLike.mk -- coe, coe_injective'
RingHom.mk.{u_5, u_6} {Ξ± : Type u_5} {Ξ² : Type u_6} [NonAssocSemiring Ξ±] [NonAssocSemiring Ξ²] (toMonoidHom : Ξ± β†’* Ξ²) (map_zero' : (↑toMonoidHom).toFun 0 = 0) (map_add' : βˆ€ (x y : Ξ±), (↑toMonoidHom).toFun (x + y) = (↑toMonoidHom).toFun x + (↑toMonoidHom).toFun y) : Ξ± β†’+* Ξ²
RingHom.mk: {Ξ± : Type u_5} β†’ {Ξ² : Type u_6} β†’ [inst : NonAssocSemiring Ξ±] β†’ [inst_1 : NonAssocSemiring Ξ²] β†’ (toMonoidHom : Ξ± β†’* Ξ²) β†’ (↑toMonoidHom).toFun 0 = 0 β†’ (βˆ€ (x y : Ξ±), (↑toMonoidHom).toFun (x + y) = (↑toMonoidHom).toFun x + (↑toMonoidHom).toFun y) β†’ Ξ± β†’+* Ξ²
RingHom.mk
-- map_zero', map_add', toMonoidHom
MonoidHom.mk.{u_10, u_11} {M : Type u_10} {N : Type u_11} [MulOneClass M] [MulOneClass N] (toOneHom : OneHom M N) (map_mul' : βˆ€ (x y : M), toOneHom.toFun (x * y) = toOneHom.toFun x * toOneHom.toFun y) : M β†’* N
MonoidHom.mk: {M : Type u_10} β†’ {N : Type u_11} β†’ [inst : MulOneClass M] β†’ [inst_1 : MulOneClass N] β†’ (toOneHom : OneHom M N) β†’ (βˆ€ (x y : M), toOneHom.toFun (x * y) = toOneHom.toFun x * toOneHom.toFun y) β†’ M β†’* N
MonoidHom.mk
-- map_mul', toOneHom
OneHom.mk.{u_10, u_11} {M : Type u_10} {N : Type u_11} [One M] [One N] (toFun : M β†’ N) (map_one' : toFun 1 = 1) : OneHom M N
OneHom.mk: {M : Type u_10} β†’ {N : Type u_11} β†’ [inst : One M] β†’ [inst_1 : One N] β†’ (toFun : M β†’ N) β†’ toFun 1 = 1 β†’ OneHom M N
OneHom.mk
-- map_one', toFun
Algebra.mk.{u, v} {R : Type u} {A : Type v} [CommSemiring R] [Semiring A] [toSMul : SMul R A] (toRingHom : R β†’+* A) (commutes' : βˆ€ (r : R) (x : A), toRingHom r * x = x * toRingHom r) (smul_def' : βˆ€ (r : R) (x : A), r β€’ x = toRingHom r * x) : Algebra R A
Algebra.mk: {R : Type u} β†’ {A : Type v} β†’ [inst : CommSemiring R] β†’ [inst_1 : Semiring A] β†’ [toSMul : SMul R A] β†’ (toRingHom : R β†’+* A) β†’ (βˆ€ (r : R) (x : A), toRingHom r * x = x * toRingHom r) β†’ (βˆ€ (r : R) (x : A), r β€’ x = toRingHom r * x) β†’ Algebra R A
Algebra.mk
-- toSMul, toRingHom, commutes', smul_def'
FreeAlgebra.Rel.{u_1, u_2} (R : Type u_1) [CommSemiring R] (X : Type u_2) : FreeAlgebra.Pre R X β†’ FreeAlgebra.Pre R X β†’ Prop
FreeAlgebra.Rel: (R : Type u_1) β†’ [inst : CommSemiring R] β†’ (X : Type u_2) β†’ FreeAlgebra.Pre R X β†’ FreeAlgebra.Pre R X β†’ Prop
FreeAlgebra.Rel
Warning: declaration uses 'sorry'
[
CommSemiring: Type u_1 β†’ Type u_1
CommSemiring
R: Type u_1
R
] [
Semiring: Type u_2 β†’ Type u_2
Semiring
A: Type u_2
A
] [
Algebra: (R : Type u_1) β†’ (A : Type u_2) β†’ [inst : CommSemiring R] β†’ [inst : Semiring A] β†’ Type (max u_1 u_2)
Algebra
R: Type u_1
R
A: Type u_2
A
] (
a: A
a
b: A
b
:
A: Type u_2
A
):
a: A
a
+
b: A
b
=
b: A
b
+
a: A
a
:=

Goals accomplished! πŸ™
Warning: 'ring_nf' tactic does nothing note: this linter can be disabled with `set_option linter.unusedTactic false`
R: Type u_1
A: Type u_2
inst✝²: CommSemiring R
inst✝¹: Semiring A
inst✝: Algebra R A
a, b: A

a + b = b + a

Goals accomplished! πŸ™
CliffordAlgebra.ΞΉ.{u_1, u_2} {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) : M β†’β‚—[R] CliffordAlgebra Q
CliffordAlgebra.ΞΉ: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ (Q : QuadraticForm R M) β†’ M β†’β‚—[R] CliffordAlgebra Q
CliffordAlgebra.ΞΉ
CliffordAlgebra.lift.{u_1, u_2, u_3} {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) {A : Type u_3} [Semiring A] [Algebra R A] : { f // βˆ€ (m : M), f m * f m = (algebraMap R A) (Q m) } ≃ (CliffordAlgebra Q →ₐ[R] A)
CliffordAlgebra.lift: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ (Q : QuadraticForm R M) β†’ {A : Type u_3} β†’ [inst_3 : Semiring A] β†’ [inst_4 : Algebra R A] β†’ { f // βˆ€ (m : M), f m * f m = (algebraMap R A) (Q m) } ≃ (CliffordAlgebra Q →ₐ[R] A)
CliffordAlgebra.lift
algebraMap.{u, v} (R : Type u) (A : Type v) [CommSemiring R] [Semiring A] [Algebra R A] : R β†’+* A
algebraMap: (R : Type u) β†’ (A : Type v) β†’ [inst : CommSemiring R] β†’ [inst_1 : Semiring A] β†’ [inst_2 : Algebra R A] β†’ R β†’+* A
algebraMap
AlgHom.{u, v, w} (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] : Type (max v w)
AlgHom: (R : Type u) β†’ (A : Type v) β†’ (B : Type w) β†’ [inst : CommSemiring R] β†’ [inst_1 : Semiring A] β†’ [inst_2 : Semiring B] β†’ [inst_3 : Algebra R A] β†’ [inst : Algebra R B] β†’ Type (max v w)
AlgHom
CliffordAlgebra.ΞΉ_comp_lift.{u_1, u_2, u_3} {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {A : Type u_3} [Semiring A] [Algebra R A] (f : M β†’β‚—[R] A) (cond : βˆ€ (m : M), f m * f m = (algebraMap R A) (Q m)) : ((CliffordAlgebra.lift Q) ⟨f, cond⟩).toLinearMap βˆ˜β‚— CliffordAlgebra.ΞΉ Q = f
CliffordAlgebra.ΞΉ_comp_lift: βˆ€ {R : Type u_1} [inst : CommRing R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {Q : QuadraticForm R M} {A : Type u_3} [inst_3 : Semiring A] [inst_4 : Algebra R A] (f : M β†’β‚—[R] A) (cond : βˆ€ (m : M), f m * f m = (algebraMap R A) (Q m)), ((CliffordAlgebra.lift Q) ⟨f, cond⟩).toLinearMap βˆ˜β‚— CliffordAlgebra.ΞΉ Q = f
CliffordAlgebra.ΞΉ_comp_lift
-- #check f₁ βˆ˜β‚— fβ‚‚
CliffordAlgebra.lift_unique.{u_1, u_2, u_3} {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} {A : Type u_3} [Semiring A] [Algebra R A] (f : M β†’β‚—[R] A) (cond : βˆ€ (m : M), f m * f m = (algebraMap R A) (Q m)) (g : CliffordAlgebra Q →ₐ[R] A) : g.toLinearMap βˆ˜β‚— CliffordAlgebra.ΞΉ Q = f ↔ g = (CliffordAlgebra.lift Q) ⟨f, cond⟩
CliffordAlgebra.lift_unique: βˆ€ {R : Type u_1} [inst : CommRing R] {M : Type u_2} [inst_1 : AddCommGroup M] [inst_2 : Module R M] {Q : QuadraticForm R M} {A : Type u_3} [inst_3 : Semiring A] [inst_4 : Algebra R A] (f : M β†’β‚—[R] A) (cond : βˆ€ (m : M), f m * f m = (algebraMap R A) (Q m)) (g : CliffordAlgebra Q →ₐ[R] A), g.toLinearMap βˆ˜β‚— CliffordAlgebra.ΞΉ Q = f ↔ g = (CliffordAlgebra.lift Q) ⟨f, cond⟩
CliffordAlgebra.lift_unique
ExteriorAlgebra.{u1, u2} (R : Type u1) [CommRing R] (M : Type u2) [AddCommGroup M] [Module R M] : Type (max u2 u1)
ExteriorAlgebra: (R : Type u1) β†’ [inst : CommRing R] β†’ (M : Type u2) β†’ [inst_1 : AddCommGroup M] β†’ [inst : Module R M] β†’ Type (max u2 u1)
ExteriorAlgebra
TensorAlgebra.toClifford.{u_1, u_2} {R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {Q : QuadraticForm R M} : TensorAlgebra R M →ₐ[R] CliffordAlgebra Q
TensorAlgebra.toClifford: {R : Type u_1} β†’ [inst : CommRing R] β†’ {M : Type u_2} β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ {Q : QuadraticForm R M} β†’ TensorAlgebra R M →ₐ[R] CliffordAlgebra Q
TensorAlgebra.toClifford
Module.Dual.{uR, uM} (R : Type uR) (M : Type uM) [CommSemiring R] [AddCommMonoid M] [Module R M] : Type (max uM uR)
Module.Dual: (R : Type uR) β†’ (M : Type uM) β†’ [inst : CommSemiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst : Module R M] β†’ Type (max uM uR)
Module.Dual
Module.Free.{u, v} (R : Type u) (M : Type v) [Semiring R] [AddCommMonoid M] [Module R M] : Prop
Module.Free: (R : Type u) β†’ (M : Type v) β†’ [inst : Semiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst : Module R M] β†’ Prop
Module.Free
Module.Finite.{u_1, u_4} (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] : Prop
Module.Finite: (R : Type u_1) β†’ (M : Type u_4) β†’ [inst : Semiring R] β†’ [inst_1 : AddCommMonoid M] β†’ [inst : Module R M] β†’ Prop
Module.Finite
LinearMap.module.{u_1, u_3, u_5, u_8, u_10} {R : Type u_1} {Rβ‚‚ : Type u_3} {S : Type u_5} {M : Type u_8} {Mβ‚‚ : Type u_10} [Semiring R] [Semiring Rβ‚‚] [AddCommMonoid M] [AddCommMonoid Mβ‚‚] [Module R M] [Module Rβ‚‚ Mβ‚‚] {σ₁₂ : R β†’+* Rβ‚‚} [Semiring S] [Module S Mβ‚‚] [SMulCommClass Rβ‚‚ S Mβ‚‚] : Module S (M β†’β‚›β‚—[σ₁₂] Mβ‚‚)
LinearMap.module: {R : Type u_1} β†’ {Rβ‚‚ : Type u_3} β†’ {S : Type u_5} β†’ {M : Type u_8} β†’ {Mβ‚‚ : Type u_10} β†’ [inst : Semiring R] β†’ [inst_1 : Semiring Rβ‚‚] β†’ [inst_2 : AddCommMonoid M] β†’ [inst_3 : AddCommMonoid Mβ‚‚] β†’ [inst_4 : Module R M] β†’ [inst_5 : Module Rβ‚‚ Mβ‚‚] β†’ {σ₁₂ : R β†’+* Rβ‚‚} β†’ [inst_6 : Semiring S] β†’ [inst_7 : Module S Mβ‚‚] β†’ [inst_8 : SMulCommClass Rβ‚‚ S Mβ‚‚] β†’ Module S (M β†’β‚›β‚—[σ₁₂] Mβ‚‚)
LinearMap.module
Star.star.{u} {R : Type u} [self : Star R] : R β†’ R
star: {R : Type u} β†’ [self : Star R] β†’ R β†’ R
star
postfix:max "ᘁ" =>
star: {R : Type u} β†’ [self : Star R] β†’ R β†’ R
star
-- https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/.E2.9C.94.20How.20to.20find.20the.20detailed.20definition.20of.20a.20.22notation.22.20.3F universe u v variable (
n2: Type u
n2
:
Type u: Type (u + 1)
Type u
) (
Ξ±2: Type v
Ξ±2
:
Type v: Type (v + 1)
Type v
) [
DivisionMonoid: Type (max v u) β†’ Type (max v u)
DivisionMonoid
(
Matrix: Type u β†’ Type u β†’ Type v β†’ Type (max u v)
Matrix
n2: Type u
n2
n2: Type u
n2
Ξ±2: Type v
Ξ±2
)] (
A: Matrix n2 n2 Ξ±2
A
B: Matrix n2 n2 Ξ±2
B
:
Matrix: Type u β†’ Type u β†’ Type v β†’ Type (max u v)
Matrix
n2: Type u
n2
n2: Type u
n2
Ξ±2: Type v
Ξ±2
) /- [Meta.synthInstance] βœ… HMul (Matrix n2 n2 Ξ±2) (Matrix n2 n2 Ξ±2) (Matrix n2 n2 Ξ±2) β–Ό [] new goal HMul (Matrix n2 n2 Ξ±2) (Matrix n2 n2 Ξ±2) _tc.0 β–Ό [instances] #[@instHMul, @Matrix.instHMulMatrixMatrixMatrix] -/
A * B : Matrix n2 n2 Ξ±2
A: Matrix n2 n2 Ξ±2
A
*
B: Matrix n2 n2 Ξ±2
B
theorem
Warning: declaration uses 'sorry'
: (
A: Matrix n2 n2 Ξ±2
A
*
B: Matrix n2 n2 Ξ±2
B
)⁻¹ =
B: Matrix n2 n2 Ξ±2
B
⁻¹ *
A: Matrix n2 n2 Ξ±2
A
⁻¹ :=

Goals accomplished! πŸ™

Goals accomplished! πŸ™
Prop : Type
Prop: Type
Prop
Bool : Type
Bool: Type
Bool
-- TOD: PR
QuadraticMap.associated_left_inverse.{u_1, u_3, u_4} (S : Type u_1) {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [CommSemiring S] [Algebra S R] [Invertible 2] {B₁ : LinearMap.BilinMap R M R} (h : LinearMap.IsSymm B₁) : (QuadraticMap.associatedHom S) B₁.toQuadraticMap = B₁
QuadraticMap.associated_left_inverse: βˆ€ (S : Type u_1) {R : Type u_3} {M : Type u_4} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] [inst_3 : CommSemiring S] [inst_4 : Algebra S R] [inst_5 : Invertible 2] {B₁ : LinearMap.BilinMap R M R}, LinearMap.IsSymm B₁ β†’ (QuadraticMap.associatedHom S) B₁.toQuadraticMap = B₁
QuadraticMap.associated_left_inverse
QuadraticMap.associated_rightInverse.{u_1, u_3, u_4} (S : Type u_1) {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [CommSemiring S] [Algebra S R] [Invertible 2] : Function.RightInverse (⇑(QuadraticMap.associatedHom S)) LinearMap.BilinMap.toQuadraticMap
QuadraticMap.associated_rightInverse: βˆ€ (S : Type u_1) {R : Type u_3} {M : Type u_4} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : Module R M] [inst_3 : CommSemiring S] [inst_4 : Algebra S R] [inst_5 : Invertible 2], Function.RightInverse (⇑(QuadraticMap.associatedHom S)) LinearMap.BilinMap.toQuadraticMap
QuadraticMap.associated_rightInverse
FreeMagma.rec.{u_1, u} {Ξ± : Type u} {motive : FreeMagma Ξ± β†’ Sort u_1} (of : (a : Ξ±) β†’ motive (FreeMagma.of a)) (mul : (a a_1 : FreeMagma Ξ±) β†’ motive a β†’ motive a_1 β†’ motive (a.mul a_1)) (t : FreeMagma Ξ±) : motive t
FreeMagma.rec: {Ξ± : Type u} β†’ {motive : FreeMagma Ξ± β†’ Sort u_1} β†’ ((a : Ξ±) β†’ motive (FreeMagma.of a)) β†’ ((a a_1 : FreeMagma Ξ±) β†’ motive a β†’ motive a_1 β†’ motive (a.mul a_1)) β†’ (t : FreeMagma Ξ±) β†’ motive t
FreeMagma.rec
FreeMonoid.{u_6} (Ξ± : Type u_6) : Type u_6
FreeMonoid: Type u_6 β†’ Type u_6
FreeMonoid
FreeSemigroup.{u} (Ξ± : Type u) : Type u
FreeSemigroup: Type u β†’ Type u
FreeSemigroup
FreeRing.{u} (Ξ± : Type u) : Type u
FreeRing: Type u β†’ Type u
FreeRing
--#check FreeModule
FreeAlgebra.Rel.{u_1, u_2} (R : Type u_1) [CommSemiring R] (X : Type u_2) : FreeAlgebra.Pre R X β†’ FreeAlgebra.Pre R X β†’ Prop
FreeAlgebra.Rel: (R : Type u_1) β†’ [inst : CommSemiring R] β†’ (X : Type u_2) β†’ FreeAlgebra.Pre R X β†’ FreeAlgebra.Pre R X β†’ Prop
FreeAlgebra.Rel
example: βˆ€ {Ξ± : Type u_1} {R A : Type} [inst : Monoid Ξ±] (a b : Ξ±), a * b = a * b
example
{
Warning: unused variable `R` note: this linter can be disabled with `set_option linter.unusedVariables false`
Warning: unused variable `A` note: this linter can be disabled with `set_option linter.unusedVariables false`
:
Type: Type 1
Type
} [
Monoid: Type u_1 β†’ Type u_1
Monoid
Ξ±: Type u_1
Ξ±
] (
a: Ξ±
a
b: Ξ±
b
:
Ξ±: Type u_1
Ξ±
) :
a: Ξ±
a
*
b: Ξ±
b
=
a: Ξ±
a
*
b: Ξ±
b
:=

Goals accomplished! πŸ™

Goals accomplished! πŸ™
RingQuot.mk.{uR} {R : Type uR} [Semiring R] {r : R β†’ R β†’ Prop} (toQuot : Quot (RingQuot.Rel r)) : RingQuot r
RingQuot.mk: {R : Type uR} β†’ [inst : Semiring R] β†’ {r : R β†’ R β†’ Prop} β†’ Quot (RingQuot.Rel r) β†’ RingQuot r
RingQuot.mk
RingQuot.Rel.{uR} {R : Type uR} [Semiring R] (r : R β†’ R β†’ Prop) : R β†’ R β†’ Prop
RingQuot.Rel: {R : Type uR} β†’ [inst : Semiring R] β†’ (R β†’ R β†’ Prop) β†’ R β†’ R β†’ Prop
RingQuot.Rel
Ideal.{u} (R : Type u) [Semiring R] : Type u
Ideal: (R : Type u) β†’ [inst : Semiring R] β†’ Type u
Ideal
TensorAlgebra.{u_1, u_2} (R : Type u_1) [CommSemiring R] (M : Type u_2) [AddCommMonoid M] [Module R M] : Type (max u_1 u_2)
TensorAlgebra: (R : Type u_1) β†’ [inst : CommSemiring R] β†’ (M : Type u_2) β†’ [inst_1 : AddCommMonoid M] β†’ [inst : Module R M] β†’ Type (max u_1 u_2)
TensorAlgebra
-- chore(Algebra/FreeAlgebra): fix comments