Lean 4 code highlighting [uts-0003]
Lean 4 code highlighting [uts-0003]
The following code is taken from pygments to test Lean 4 code highlighting, with only wrapped strings removed because it confuses forester.
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import Mathlib.Order.Chain
#align_import order.zorn from "leanprover-community/mathlib"@"46a64b5b4268c594af770c44d9e502afc6a515cb"
/-!
# Zorn's lemmas
This file proves several formulations of Zorn's Lemma.
## Variants
The primary statement of Zorn's lemma is `exists_maximal_of_chains_bounded`. Then it is specialized
to particular relations:
* `(≤)` with `zorn_partialOrder`
* `(⊆)` with `zorn_subset`
* `(⊇)` with `zorn_superset`
Lemma names carry modifiers:
* `₀`: Quantifies over a set, as opposed to over a type.
* `_nonempty`: Doesn't ask to prove that the empty chain is bounded and lets you give an element
that will be smaller than the maximal element found (the maximal element is no smaller than any
other element, but it can also be incomparable to some).
## How-to
This file comes across as confusing to those who haven't yet used it, so here is a detailed
walkthrough:
1. Know what relation on which type/set you're looking for. See Variants above. You can discharge
some conditions to Zorn's lemma directly using a `_nonempty` variant.
2. Write down the definition of your type/set, put a `suffices : ∃ m, ∀ a, m ≺ a → a ≺ m, { ... },`
(or whatever you actually need) followed by an `apply some_version_of_zorn`.
3. Fill in the details. This is where you start talking about chains.
A typical proof using Zorn could look like this (TODO: update to mathlib4)
```lean
lemma zorny_lemma : zorny_statement :=
begin
let s : Set α := {x | whatever x},
suffices : ∃ x ∈ s, ∀ y ∈ s, y ⊆ x → y = x, -- or with another operator
{ exact proof_post_zorn },
apply zorn_subset, -- or another variant
rintro c hcs hc,
obtain rfl | hcnemp := c.eq_empty_or_nonempty, -- you might need to disjunct on c empty or not
{ exact ⟨edge_case_construction,
proof_that_edge_case_construction_respects_whatever,
proof_that_edge_case_construction_contains_all_stuff_in_c⟩ },
exact ⟨construction,
proof_that_construction_respects_whatever,
proof_that_construction_contains_all_stuff_in_c⟩,
end
```
## Notes
Originally ported from Isabelle/HOL. The
[original file](https://isabelle.in.tum.de/dist/library/HOL/HOL/Zorn.html) was written by Jacques D.
Fleuriot, Tobias Nipkow, Christian Sternagel.
-/
open Classical Set
variable {α β : Type*} {r : α → α → Prop} {c : Set α}
/-- Local notation for the relation being considered. -/
local infixl:50 " ≺ " => r
/-- **Zorn's lemma**
If every chain has an upper bound, then there exists a maximal element. -/
theorem exists_maximal_of_chains_bounded (h : ∀ c, IsChain r c → ∃ ub, ∀ a ∈ c, a ≺ ub)
(trans : ∀ {a b c}, a ≺ b → b ≺ c → a ≺ c) : ∃ m, ∀ a, m ≺ a → a ≺ m :=
have : ∃ ub, ∀ a ∈ maxChain r, a ≺ ub := h _ <| maxChain_spec.left
let ⟨ub, (hub : ∀ a ∈ maxChain r, a ≺ ub)⟩ := this
⟨ub, fun a ha =>
have : IsChain r (insert a <| maxChain r) :=
maxChain_spec.1.insert fun b hb _ => Or.inr <| trans (hub b hb) ha
hub a <| by
rw [maxChain_spec.right this (subset_insert _ _)]
exact mem_insert _ _⟩
#align exists_maximal_of_chains_bounded exists_maximal_of_chains_bounded
/-- A variant of Zorn's lemma. If every nonempty chain of a nonempty type has an upper bound, then
there is a maximal element.
-/
theorem exists_maximal_of_nonempty_chains_bounded [Nonempty α]
(h : ∀ c, IsChain r c → c.Nonempty → ∃ ub, ∀ a ∈ c, a ≺ ub)
(trans : ∀ {a b c}, a ≺ b → b ≺ c → a ≺ c) : ∃ m, ∀ a, m ≺ a → a ≺ m :=
exists_maximal_of_chains_bounded
(fun c hc =>
(eq_empty_or_nonempty c).elim
(fun h => ⟨Classical.arbitrary α, fun x hx => (h ▸ hx : x ∈ (∅ : Set α)).elim⟩) (h c hc))
trans
#align exists_maximal_of_nonempty_chains_bounded exists_maximal_of_nonempty_chains_bounded
section Preorder
variable [Preorder α]
theorem zorn_preorder (h : ∀ c : Set α, IsChain (· ≤ ·) c → BddAbove c) :
∃ m : α, ∀ a, m ≤ a → a ≤ m :=
exists_maximal_of_chains_bounded h le_trans
#align zorn_preorder zorn_preorder
theorem zorn_nonempty_preorder [Nonempty α]
(h : ∀ c : Set α, IsChain (· ≤ ·) c → c.Nonempty → BddAbove c) : ∃ m : α, ∀ a, m ≤ a → a ≤ m :=
exists_maximal_of_nonempty_chains_bounded h le_trans
#align zorn_nonempty_preorder zorn_nonempty_preorder
theorem zorn_preorder₀ (s : Set α)
(ih : ∀ c ⊆ s, IsChain (· ≤ ·) c → ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub) :
∃ m ∈ s, ∀ z ∈ s, m ≤ z → z ≤ m :=
let ⟨⟨m, hms⟩, h⟩ :=
@zorn_preorder s _ fun c hc =>
let ⟨ub, hubs, hub⟩ :=
ih (Subtype.val '' c) (fun _ ⟨⟨_, hx⟩, _, h⟩ => h ▸ hx)
(by
rintro _ ⟨p, hpc, rfl⟩ _ ⟨q, hqc, rfl⟩ hpq
refine' hc hpc hqc fun t => hpq (Subtype.ext_iff.1 t))
⟨⟨ub, hubs⟩, fun ⟨y, hy⟩ hc => hub _ ⟨_, hc, rfl⟩⟩
⟨m, hms, fun z hzs hmz => h ⟨z, hzs⟩ hmz⟩
#align zorn_preorder₀ zorn_preorder₀
theorem zorn_nonempty_preorder₀ (s : Set α)
(ih : ∀ c ⊆ s, IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub) (x : α)
(hxs : x ∈ s) : ∃ m ∈ s, x ≤ m ∧ ∀ z ∈ s, m ≤ z → z ≤ m := by
-- Porting note: the first three lines replace the following two lines in mathlib3.
-- The mathlib3 `rcases` supports holes for proof obligations, this is not yet implemented in 4.
-- rcases zorn_preorder₀ ({ y ∈ s | x ≤ y }) fun c hcs hc => ?_ with ⟨m, ⟨hms, hxm⟩, hm⟩
-- · exact ⟨m, hms, hxm, fun z hzs hmz => hm _ ⟨hzs, hxm.trans hmz⟩ hmz⟩
have H := zorn_preorder₀ ({ y ∈ s | x ≤ y }) fun c hcs hc => ?_
· rcases H with ⟨m, ⟨hms, hxm⟩, hm⟩
exact ⟨m, hms, hxm, fun z hzs hmz => hm _ ⟨hzs, hxm.trans hmz⟩ hmz⟩
· rcases c.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
· exact ⟨x, ⟨hxs, le_rfl⟩, fun z => False.elim⟩
· rcases ih c (fun z hz => (hcs hz).1) hc y hy with ⟨z, hzs, hz⟩
exact ⟨z, ⟨hzs, (hcs hy).2.trans <| hz _ hy⟩, hz⟩
#align zorn_nonempty_preorder₀ zorn_nonempty_preorder₀
theorem zorn_nonempty_Ici₀ (a : α)
(ih : ∀ c ⊆ Ici a, IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub, ∀ z ∈ c, z ≤ ub)
(x : α) (hax : a ≤ x) : ∃ m, x ≤ m ∧ ∀ z, m ≤ z → z ≤ m := by
let ⟨m, _, hxm, hm⟩ := zorn_nonempty_preorder₀ (Ici a) (fun c hca hc y hy ↦ ?_) x hax
· exact ⟨m, hxm, fun z hmz => hm _ (hax.trans <| hxm.trans hmz) hmz⟩
· have ⟨ub, hub⟩ := ih c hca hc y hy; exact ⟨ub, (hca hy).trans (hub y hy), hub⟩
#align zorn_nonempty_Ici₀ zorn_nonempty_Ici₀
end Preorder
section PartialOrder
variable [PartialOrder α]
theorem zorn_partialOrder (h : ∀ c : Set α, IsChain (· ≤ ·) c → BddAbove c) :
∃ m : α, ∀ a, m ≤ a → a = m :=
let ⟨m, hm⟩ := zorn_preorder h
⟨m, fun a ha => le_antisymm (hm a ha) ha⟩
#align zorn_partial_order zorn_partialOrder
theorem zorn_nonempty_partialOrder [Nonempty α]
(h : ∀ c : Set α, IsChain (· ≤ ·) c → c.Nonempty → BddAbove c) : ∃ m : α, ∀ a, m ≤ a → a = m :=
let ⟨m, hm⟩ := zorn_nonempty_preorder h
⟨m, fun a ha => le_antisymm (hm a ha) ha⟩
#align zorn_nonempty_partial_order zorn_nonempty_partialOrder
theorem zorn_partialOrder₀ (s : Set α)
(ih : ∀ c ⊆ s, IsChain (· ≤ ·) c → ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub) :
∃ m ∈ s, ∀ z ∈ s, m ≤ z → z = m :=
let ⟨m, hms, hm⟩ := zorn_preorder₀ s ih
⟨m, hms, fun z hzs hmz => (hm z hzs hmz).antisymm hmz⟩
#align zorn_partial_order₀ zorn_partialOrder₀
theorem zorn_nonempty_partialOrder₀ (s : Set α)
(ih : ∀ c ⊆ s, IsChain (· ≤ ·) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub) (x : α)
(hxs : x ∈ s) : ∃ m ∈ s, x ≤ m ∧ ∀ z ∈ s, m ≤ z → z = m :=
let ⟨m, hms, hxm, hm⟩ := zorn_nonempty_preorder₀ s ih x hxs
⟨m, hms, hxm, fun z hzs hmz => (hm z hzs hmz).antisymm hmz⟩
#align zorn_nonempty_partial_order₀ zorn_nonempty_partialOrder₀
end PartialOrder
theorem zorn_subset (S : Set (Set α))
(h : ∀ c ⊆ S, IsChain (· ⊆ ·) c → ∃ ub ∈ S, ∀ s ∈ c, s ⊆ ub) :
∃ m ∈ S, ∀ a ∈ S, m ⊆ a → a = m :=
zorn_partialOrder₀ S h
#align zorn_subset zorn_subset
theorem zorn_subset_nonempty (S : Set (Set α))
(H : ∀ c ⊆ S, IsChain (· ⊆ ·) c → c.Nonempty → ∃ ub ∈ S, ∀ s ∈ c, s ⊆ ub) (x)
(hx : x ∈ S) : ∃ m ∈ S, x ⊆ m ∧ ∀ a ∈ S, m ⊆ a → a = m :=
zorn_nonempty_partialOrder₀ _ (fun _ cS hc y yc => H _ cS hc ⟨y, yc⟩) _ hx
#align zorn_subset_nonempty zorn_subset_nonempty
theorem zorn_superset (S : Set (Set α))
(h : ∀ c ⊆ S, IsChain (· ⊆ ·) c → ∃ lb ∈ S, ∀ s ∈ c, lb ⊆ s) :
∃ m ∈ S, ∀ a ∈ S, a ⊆ m → a = m :=
(@zorn_partialOrder₀ (Set α)ᵒᵈ _ S) fun c cS hc => h c cS hc.symm
#align zorn_superset zorn_superset
theorem zorn_superset_nonempty (S : Set (Set α))
(H : ∀ c ⊆ S, IsChain (· ⊆ ·) c → c.Nonempty → ∃ lb ∈ S, ∀ s ∈ c, lb ⊆ s) (x)
(hx : x ∈ S) : ∃ m ∈ S, m ⊆ x ∧ ∀ a ∈ S, a ⊆ m → a = m :=
@zorn_nonempty_partialOrder₀ (Set α)ᵒᵈ _ S (fun _ cS hc y yc => H _ cS hc.symm ⟨y, yc⟩) _ hx
#align zorn_superset_nonempty zorn_superset_nonempty
/-- Every chain is contained in a maximal chain. This generalizes Hausdorff's maximality principle.
-/
theorem IsChain.exists_maxChain (hc : IsChain r c) : ∃ M, @IsMaxChain _ r M ∧ c ⊆ M := by
-- Porting note: the first three lines replace the following two lines in mathlib3.
-- The mathlib3 `obtain` supports holes for proof obligations, this is not yet implemented in 4.
-- obtain ⟨M, ⟨_, hM₀⟩, hM₁, hM₂⟩ :=
-- zorn_subset_nonempty { s | c ⊆ s ∧ IsChain r s } _ c ⟨Subset.rfl, hc⟩
have H := zorn_subset_nonempty { s | c ⊆ s ∧ IsChain r s } ?_ c ⟨Subset.rfl, hc⟩
· obtain ⟨M, ⟨_, hM₀⟩, hM₁, hM₂⟩ := H
exact ⟨M, ⟨hM₀, fun d hd hMd => (hM₂ _ ⟨hM₁.trans hMd, hd⟩ hMd).symm⟩, hM₁⟩
rintro cs hcs₀ hcs₁ ⟨s, hs⟩
refine'
⟨⋃₀cs, ⟨fun _ ha => Set.mem_sUnion_of_mem ((hcs₀ hs).left ha) hs, _⟩, fun _ =>
Set.subset_sUnion_of_mem⟩
rintro y ⟨sy, hsy, hysy⟩ z ⟨sz, hsz, hzsz⟩ hyz
obtain rfl | hsseq := eq_or_ne sy sz
· exact (hcs₀ hsy).right hysy hzsz hyz
cases' hcs₁ hsy hsz hsseq with h h
· exact (hcs₀ hsz).right (h hysy) hzsz hyz
· exact (hcs₀ hsy).right hysy (h hzsz) hyz
#align is_chain.exists_max_chain IsChain.exists_maxChain
-- other bits of tricky syntax
variable {ι A B : Type*} (𝒜 : ι → A) (ℬ : ι → B)
#check `𝒜.a
#check ``𝒜
#check List.get!
#check 1.0 + 2. + 0.3e1
#check "\
This is\na \
wrapped string."
@[to_additive "See note [foo]"]
lemma mul_one : sorry := sorry