Notes on Topos Theory and Type Theory

Utensil Song

September 2, 2025

1 Category theory

1.1 Categories

Definition 1.1.1 (Category [Kostecki(2011), 1.1])

A category C consists of:

1. objects Ob(C): O, X, Y, ...
2. arrows Arr(C): f,4,h,..., where for each arrow f,

* a pair of operations dom and cod assign a domain object X = dom(f)
and a codomain object Y = cod(f) to f,

¢ thus f can be denoted by

f:X->Y (1.1.2)
or
X i) Y (1.1.3)

3. compositions: a composite arrow of any pair of arrows f and g, denoted
go f or f e g, makes the diagram

N
—_—
X Foz Z
commute (we say that f e ¢ factors through Y),

4. aidentity arrow for each object O, denoted 1o : O — O



satisfying:

1. associativity of composition: the diagram

(feg)oh=fe(geh)
commutes,

2. identity law: the diagram

commutes.

Convention 1.1.4 (Composition [Kostecki(2011), 1.1])

In literatures, composition of arrows in a category is most frequently denoted o
or just by juxtaposition, i.e. for the diagram

g o f orjust gf mean g applies to the result of f.

But this is the opposite of the order of arrows in the diagram, so arguably a more
natural way could be to denote the above as f; g [Kostecki(2011), 1.1], oras f g
[Fong and Spivak(2018), 3.6], or as f e g [Nakahira(2023), sec. 1.1].

We use f e g throughout this note, so it can always be understood as Lﬂ This
way saves mental energy when reading commuting diagrams, pasting diagrams
and string diagrams which we employ heavily.

Definition 1.1.5 ((locally) small, hom-set [Kostecki(2011), 1.3])

A category C is called locally small iff for any of its objects X, Y, the collection
of arrows from X to Y is a set, called a hom-set, denoted



Home¢ (X, Y) (1.1.6)

A category is called small iff the collection of all its arrows is a set.

Notation 1.1.7 (Hom-set, hom-class [Zhang(2021), 1.2])

Hom in Home (X, Y) is short for homomorphism, since an arrow in category
theory is a morphism (i.e. an arrow), a generalization of homomorphism
between algebraic structures.

This notation could be unnecessarily verbose, so when there is no confusion, we
follow [Leinster(2016)] and [Zhang(2021)] to simply write X, Y € Ob(C) as

X,YeC (1.1.8)

and f € Home(X,Y) as

feC(X,Y) (1.1.9)

In some other scenarios, when the category in question is clear (and it might be
to too verbose to write out, e.g. a functor category), we omit the subscript of the
category and write just

Hom(X,Y) (1.1.10)

In general, collection Ob(C) and Arr(C) are not neccessarily sets, but classes. In
that case, Hom¢ (X, Y) is called a hom-class.

Later, we will also learn that Ob and Arr are representable functors.

Definition 1.1.11 (Finite [Kostecki(2011), 1.3])

A category is called finite iff it is small and it has only a finite number of objects
and arrows.

Definition 1.1.12 (Commuting diagram [Kostecki(2011), 1.2])

A diagram in a category C is defined as a collection of objects and arrows that
belong to the category C with specified operations dom and cod.

A commuting diagram is defined as such diagram that any two arrows of this
diagram which have the same domain and codomain are equal.


https://en.wikipedia.org/wiki/Homomorphism
https://en.wikipedia.org/wiki/Morphism
https://en.wikipedia.org/wiki/Class_(set_theory)

For example, that the diagram

commutes means f e g = h o k.

It’s also called a arrow diagram [Nakahira(2023), 1.1] when compared to a string
diagram, as it represents arrows with —.

Definition 1.1.13 (String diagram [Nakahira(2023), table 1.1])

A string diagram represents categories as surfaces (2-dimensional), functors
as wires (1-dimensional), natural transformations as blocks or just dots (0-
dimensional).

String diagrams has the advantage of being able to represent objects, arrows,
functors, and natural transformations from multiple categories, and their vertical
and horizontal composition, and has various topologically plausible calcula-
tional rules for proofs.

Notation 1.1.14 (String diagrams: category, object and arrow [Marsden(2014), sec.
21])

Later, when we have learned about functors and natural transformations, we
will see that, in string diagram for 1-category:

1. A category C is represented as a colored region:

2. Functors of type 1 — C can be identified with objects of the category
C, where 1 is the the terminal category, so an object X € Ob(C) can be
represented as:



X

3. An arrow f : X — Y is then a natural transformation between two of
these functors, represented as:

Convention 1.1.15 (Letters)

The general idea is that we try to use visually distinct letters for different concepts:

1. uppercase calligraphic letters C, D, &, T, S denote categories
* C,D, & are prefered in concepts about one to three categories, since
C is the first letter of “category”
* g is used in concepts like diagram, and assumed to be small
* S is used in concepts like subcategory, or sometimes in concepts
about a small category
2. boldface uppercase Roman letters denote specific categories, e.g. Cat, Set, Grp, Top, 1

3. uppercase Roman letters X,Y,Z, W, O, E, V denote objects in categories

* X,Y usually mean objects in C and D, respectively

* O denotes any object

¢ E denotes the equalizer object

e in limit-related concepts, — denotes any object, V denotes the vertex
4. lowercase Roman letters f, g, h,i,k,[,r and sometimes the lowercase

Roman letter of the corresponding codomain or domain object denote
arrows

* occationally, when two arrows are closely related, they are denoted
by the same letter with different subscripts, e.g. g1, g2



* as special cases, (, p, i denote the inclusion, projection and injection
arrows

5. uppercase script letters 7,9, %, 7, %, £, # denote functors

* P denotes a diagram functor

* Z and % denote the left and right adjoint functors in an adjunction,
respectively

* % denotes the Yoneda embedding functors

* as a special case, functors with the terminal category (i.e. constant
object functors) as the domain are identified with the objects in the
codomain category, thus are denoted like an object: X : 1 — C,* — X

* 7 is only used in the inclusion functor (note that this is letter ”1”)

* we do not use ,# and § because they are visually ambiguous

6. lowercase Greek letters a, 8,1, €, 0 denote natural transformations, their
components are denoted by them with subscripts.

1.2 Isomorphism

Definition 1.2.1 (Monic [Kostecki(2011), 2.1])

An arrow f : X — Y is monic if the diagram

o #ﬁ x—L 5y
commutes, ie. g1 o f =g2e f = g1 =go,denoted f : X — Y.

“Monic” is short for “monomorphism”, which is a generalization of the concept
of injective (one-to-one) functions between sets.

Definition 1.2.2 (Epic [Kostecki(2011), 2.2])

An arrow f : X — Y'is epic if the diagram

X%Y#;O

commutes,i.e. feg; =feogy = g1 =ga,denoted f : X » Y.

”Epic” is short for “epimorphism”, which is a generalization of the concept of
surjective (onto) functions between sets.



Definition 1.2.3 (Iso [Kostecki(2011), 2.3])
An arrow f : X — Y isiso, or X and Y are isomorphic, denoted X = Y, or
X — Y, if the diagram

commutes, where !¢ means there exists a unique arrow g, and g is called the
inverse of f, denoted f!.

”Iso” is short for “isomorphism”, which is a generalization of the concept of
bijective (one-to-one and onto) functions.

Convention 1.2.4 (Uniqueness: dashed arrow)

Uniqueness of an arrow is denoted 3! f or simply ! f, and visualized as a dashed
arrow in diagrams, and ! is often omitted.

Lemma 1.2.5 (Iso [Kostecki(2011), 2.4])

An iso arrow is always monic and epic. However, not every arrow which is
monic and epic is also iso.

Proof. The diagram

gef fek
f k
Z ¢ X Z 7Y r W
h \ f‘l I
hef feol

commutes for the iso arrow f, thus

* ¢ =hie. fismonic,

e k=1lie. fisepic.




1.3 Special objects and categories

Definition 1.3.1 (Initial, terminal and null objects [Kostecki(2011), 2.6])

An initial object in a category C is an object 0 € Ob(C) such that for any object
X in C, there exists a unique arrow 0 — X. It’s also called a universal object, or
a free object.

A terminal object in a category C is an object 1 € Ob(C) such that for any object
X in C, there exists a unique arrow X — 1. It’s also called a final object, or a
bound object.

Diagramatically,
0
. //’/ 1 \\\\ R
- I ~
PV A NN
i ’ ! \ S
7 / 1 \ ~N
g VL + N ~q
. . ° ° ° C
AN \ | 4 e
~ 7
SO \\ : // e
~ \ / 7
Se N | Vi
~ \ 1 / e
> \ﬁ(ﬂ/\ﬁ/ -
1

A null object is an object which is both terminal and initial, confusingly, it’s
also called a zero object.

Lemma 1.3.2 (Uniqueness [Kostecki(2011), 2.7])
All initial objects in a category are isomorphic.
All terminal objects in a category are isomorphic.

In other words, they are unique up to isomorphism, respectively.

Definition 1.3.3 (Element [Kostecki(2011), 2.8, 2.9])
Let X, S € Ob(C).

An element or a generalized element of X at stage S (or, of shape S) is an arrow
x:S — XinC, also denoted x €5 X.

An arrow 1 — X is called a global element of X, a.k.a. a point of X.



An arrow S — X, if S is not isomorphic to 1, is called the local element of X at
stage S.

An arrow Ix : X — X is called the generic element of X.

Remark 1.3.4 (Element [Kostecki(2011), 2.8])

In an element x : S — X, the object S is called a stage in order to express
the intuition that it is a “place of view” on X. In the same sense, S is also
called a domain of variation, and X a variable element.

Sometimes, the term shape is used instead [Leinster(2016), 4.1.25], intuitive
examples are:

e when the object is a set, a generalized element of X of shape N is a
sequence in the set X

¢ when the object is a topological space, a generalized element of X of
shape S! is a loop

In the context of studying solutions to polynomial equations, we may also
call it a S-valued point in X, where S is the number set where the solution
is taken, e.g. the real, complex, and Spec F,-valued solutions.

Definition 1.3.5 (Equivalent, equivalence class [Kostecki(2011), 2.10])

Two monic arrows x and y which satisfy

are called equivalent, which is denoted as x ~ y.
The equivalence class of x is denoted as [x], i.e., [x] = {y | x ~ y}.

Definition 1.3.6 (Subobject, Sub [Kostecki(2011), 2.10])

A subobiject of any object is defined as an equivalence class of monic arrows
into it.

The class of subobjects of an object X is denoted as

Sub(X) :={[f]| cod(f) = X A f is monic }. (1.3.7)



Definition 1.3.8 (Set [Kostecki(2011), 1.1, example 1])

Set, the category of sets, consists of objects which are sets, and arrows which are
functions between them. The axioms of composition, associativity and identity
hold due to standard properties of sets and functions.

Set has the initial object @, the empty set, and the terminal object, {+}, the
singleton set.

Set doesn’t have a null object.

Monic arrows in Set are denoted by f : X < Y, interpreted as an inclusion map
(see also inclusion function in nLab).

Given X : Set, the subobjects of X are in canonical one-to-one correspondence
with the subsets of X.

Notation 1.3.9 (Inclusion [Leinster(2016), 0.8])

In

X;)y

the symbol < is used for inclusions. It is a combination of a subset symbol C
and an arrow.

Definition 1.3.10 (Cat [Leinster(2016), 3.2.10])

We denote by Cat the category of small categories and functors between them.

Definition 1.3.11 (Discrete category [Leinster(2016), 1.1.8])

A discrete category has no arrows apart from the identity arrow, i.e. it amounts
to just a class of objects.

We can regard a set as a discrete category.

Definition 1.3.12 (Terminal category [Leinster(2016), 4.1.6])

A terminal category, denoted 1, has only one object, denoted *, and only the
identity arrow, denoted 1.

1

()

10


https://en.wikipedia.org/wiki/Inclusion_map
https://ncatlab.org/nlab/show/inclusion+function

Definition 1.3.13 (Opposite category [Kostecki(2011), 2.5])
A category is called the opposite category of C, denoted C, iff

1. (reversion of arrows)

Ob(C) = Ob(C) (1.3.14)
Arr(CP)s f:Y 5 X = Arr(C)> f: X > Y (1.3.15)
2. (reversion of composition)
X feg——> Y X <—zg°f Y

C> \ / — \ / e Cor
f 8 f g
Z Z

Definition 1.3.16 (Product category [Leinster(2016), 1.1.11])
Given categories C and D, there is a product category, denoted C x D, in which

* an object is a pair (X, Y)

an arrow (X,Y) — (X', Y’) is a pair (f, g)

¢ the composition is given by
(f1,81) 9 (f2,82) =(f1® f2,81®g2) (1.3.17)

¢ the identity on (X, Y), denoted 1(x v) is (1x, Iy)

where X €C,YeD,f: X - X' eC,andg:Y - Y € D.

Definition 1.3.18 ((full) subcategory [Leinster(2016), 1.2.18])

Let C be a category. A subcategory S of C consists of a subclass Ob(S) of Ob(C)
together with, for each S, S’ € Ob(S), a subclass S (S, S’) of C (S, S’), such that
S is closed under composition and identities.

It is a full subcategory if S(S,5’) =C (S, S’) forall S, S’ € Ob(S).

1.4 Functors

Definition 1.4.1 ((covariant) functor [Kostecki(2011), 3.1])

A (covariant) functor ¥ : C — D is given by the diagram

11



f F(f)
Fog Y Q 1y _z 1zm) Cg(y) F(f)eF(g)
g 7(8)
Z F(2)
C ~ D

i.e. a map of objects and arrows between categories C and D that preserves the
structure of the compositions and identities.

Definition 1.4.2 (Contravariant functor [Kostecki(2011), 3.1])

A functor & is called a contravariant functor from C to 9, and denoted & :
C% — D, if it obeys the definition given by the (covariant) functor for C
replaced by C°, i.e. it’s given by the diagram

X F(X)
f F(f)
fog \Y/ D Iy _ 1) CPF(Y) F(g)eF (f)
8 F(8)
z #(2)
cer - D

i.e. a map of objects and arrows between categories C and D that reverses the
structure of the arrows, compositions and identities.

Definition 1.4.3 (Functorial in [Leinster(2016), sec. 4.1])

For some expression E(X) containing X, when we say E(X) is (covariant) func-
torial in X, we mean that there exists a functor & such that

12



E(X)

E(X")

forevery f : X — X'.
Dually, we use the term contravariantly functorial in.

Convention 1.4.4 (Functors)

For simplicity, when there is no confusion, we use e to represent corresponding
objects, and omit the arrow names in the codomain of a functor, e.g.

Definition 1.4.5 (Full and faithful [Kostecki(2011), 3.2])

A functor ¥ : C — D is full iff for any pair of objects X, Y in C the induced
map Fxy : C(X,Y) = D(F(X), F(Y)) is surjective (onto). F is faithful if this
map is injective (one-to-one).

Definition 1.4.6 (Preserve and reflect [Kostecki(2011), 3.3])

A functor  : C — D is called to preserve a property g of an arrow iff for
every f € Arr(C) that has a property g it follows that #(f) € Arr(D) has this
property. A functor ¥ : C — O is called to reflect a property g of an arrow iff
for every F(f) € Arr(D) that has a property g it follows that f € Arr(C) has
this property.

Example 1.4.7 (Full, faithful, preserve and reflect [Kostecki(2011), 3.3])

Every inclusion functor is faithful.
Every functor preserves isomorphisms.

Every faithful functor reflects monomorphisms and epimorphisms.

13



Every full and faithful functor reflects isomorphisms.

1.5 Special functors

Definition 1.5.1 (ldentity functor [Kostecki(2011), 3.1, example 1])

The identity functor I¢c : C — C (denoted also by 1¢ : C — C), defined by
Ic(X) = X and I¢(f) = f for every X € Ob(C) and every f € Arr(C).

Definition 1.5.2 (Constant functor [Kostecki(2011), 3.1, example 2])

The constant functor Ap : C — D which assigns a fixed O € Ob(D) to any
object of C and Ip, the identity arrow on O, to any arrows from C :

X (0]
Ao
f |:} 1o
Y O
C Lo D

with compositions and identities preserved in a trivial way.

Definition 1.5.3 (Constant object functor [Leinster(2016), 4.1.6])

A functor from the terminal category 1 to a category C simply picks out an object
of C, called a constant object functor (which is a constant functor), denoted
Ax :1 — C for some X € Ob(C), or simly denoted by the object, e.g. X.

As special cases, constant object functor for initial and terminal objects are
denoted by 0 and 1, respectively.

Definition 1.5.4 (Unique functor [Nakahira(2023), eq. 2.3])

A unique functor, is a functor from a category C to the terminal category 1,
uniquely determined by mapping all arrows in C to the identity arrow I, of the
unique object * in 1.

This functor is often denoted by ! : C — 1.

Intuitively, the functor ! acts to erase all information about the input.
Definition 1.5.5 (Diagonal functor [Leinster(2016), sec. 6.1])

Given a small category J and a category C, the diagonal functor

14



Ag:C—[J,C] (1.5.6)

maps each object X € C to the constant functor A7 (X) : J — C, which in turn
maps each object in J to X, and all arrows in J to Ix.

When J is clear in the context, we may write A7(X) as Ax.

Particularly [Kostecki(2011), 3.1, example 6], when 7 is a discrete category of
two objects,

A:C—>CxC,AX)=X,X)and A(f)=(f,f)for f: X = X’

Ag(X) is the same as Xe!, thus [Nakahira(2023), eq. 2.12]

Ag = —e! (1.5.7)

Definition 1.5.8 (Forgetful functor [Kostecki(2011), 3.1, example 3])

The forgetful functor, which forgets some part of structure, however arrows,
compositions and identities are preserved.

Definition 1.5.9 (Inclusion functor [Leinster(2016), 1.2.18])

Whenever S is a subcategory of a category C , there is an inclusion functor
J : 8 — C defined by #(S) = S and #(f) = f , i.e. it sends objects and arrows
of § into themselves in category C. It is automatically faithful, and it is full iff
S is a full subcategory.

Example 1.5.10 (Other special functors [Kostecki(2011), 3.1, example 10, 11,
4.6])

Some other special functors are introduced in later sections in context, e.g.
hom-functor, Yoneda embedding functors.

1.6 Universal properties

Definition 1.6.1 (Universal arrow [Kostecki(2011), 3.4, 3.5])

A universal arrow from X € D to # : C — D is a unique pair (O, u) that makes
the diagram

15



Q=== 0

0eb-——-———o

>
S *l=

)

commute for any f € D.

Conversely, a (co)universal arrow from & : C — D to X € D is a unique pair
(O, u) that makes the diagram

X¢+— % o o)
N PN

! F |

f : ’°

! I

. o’

D C

commute for any f € D.

Remark 1.6.2 (Universal property [Leinster(2016), sec. 1])

We say universal arrows satisfy some universal property.

The term universal property is used to describe some property (usually
some equality of some compositions, or a commuting diagram in gen-
eral) that is satisfied for all (hence universal) relevant objects/arrows in
the “world” (i.e. in the relevant categories), by a corresponding unique
object/arrow.

It’s usually spell out like this:

In a context where (usually a given diagram), for all (some
objects/arrows), there exists a unique (object/arrow) such that
(some property).

Diagramatically,




o« ——— o

|

|
Nia!g

'

.

For clarity and brevity, usually the V clauses are specified outside the dia-
gram, and the 3! clause is expressed by dashed arrows. For more elaborate
diagrams, see [Freyd(1976)][Fong and Spivak(2018)][Ochs(2022)].

For the diagram above, we also say that f uniquely factors through u along
g [Riehl(2017), 2.3.7].

A universal property is a property of some construction which boils down
to (is manifestly equivalent to) the property that an associated object is an
initial object of some (auxiliary) category [nLab(2020)].

Definition 1.6.3 (Comma category [Leinster(2016), 2.3.1])

Given categories and functors

D
Jf
C——6&

F

the comma category & | ¥ (or (¥ = ¥)) is the category given by objects
(X, h,Y) and arrows (f, g) that makes the diagram

commute.

17



Lemma 1.6.4 (Universal arrow via initial /terminal object of comma category
[Kostecki(2011), 3.6])

A universal arrow from X € D to F : C — D is an initial object in the
comma category X | F.

Conversely, a (co)universal arrow from #F : C — D to X € D is a terminal
object in the comma category & | X.

1.7 Natural transformation and functor category

Definition 1.7.1 (Natural transformation [Leinster(2016), 1.3.1])

Given categories and functors

F

C——=D

g

the natural transformation o : ¥ — &, denoted

is a collection of arrows {ax : #(X) — F(X)} xeon(c) In D which satisfies natu-
rality, i.e. makes the diagram

commute for every arrow f : X — X’ in C. The arrows {ax} xcon(c) are called
the components of the natural transformation.

Definition 1.7.2 (Pasting diagram [Nakahira(2023), table 1.1])

A pasting diagram represents categories as points (0-dimensional), arrows —



(1-dimensional), natural transformations as surfaces with level-2 arrows =
(0O-dimensional).

For example:

C—e— D 4
NP

It’s dual to a corresponding string diagram

F
2
14
p
X H

Definition 1.7.3 (Nat [Kostecki(2011), 4.4])

The collection of natural transformations from functors & to € is denoted
Nat(F, ©).

Notation 1.7.4 (String diagrams: functor and natural transformation [Marsden(2014),
sec. 2])

In string diagrams,

1. A functor F : C — D can be represented as an edge, commonly referred
to as a wire:
F
c | O
F

2. Functors compose from left to right:

19



Q
«

F g
3. A natural transformation « : ¥ — F’ can be represented as a dot on the

wire from top to bottem (the opposite direction of [Marsden(2014)], but
the same as [Sterling(2023)]), connecting the two functors :

F

LG/TI

4. Natural transformations (for the same pair of categories) compose vertically
from top to bottem:

%9

9‘/

g”

5. Natural transformations (from different pairs of categories) compose hori-
zontally from left to right:

N
«

6. The two ways of composing natural transformations are related by the
interchange law:

20



o
F’ /?’ ,
o
gl/ gli
i.e.
(@ea)e(Bep)=(asp)e(@sp) (1.7.5)

7. The naturality in natural transformations is equivalent to the following
equality:

X F X F
ax f
f Oy

X g X g

where X and X’ are objects in C, understood as functors from the terminal
category 1 to C.

Since a string diagrams is composed from top to bottem, left to right, we

can read

X’ ? g

as

(XeF)e(ax)e(fel)=(X"0%) = (XeF)e(feF)e(ay)=(X"e9)
(1.7.6)

where each pair of parentheses corresponds to an overlay in the string
diagram,

or with the notation in the opposite direction that is more familiar to most:
Z(floaxoF(X)=9(X) = ayoF(f)oF(X)=%(X) (17.7)

21



Note that we read the wire from % to € as % before the natural transfor-
mation, but as € after the transformation.

Effectively naturality says that the natural transformation and function f
“slide past each other”, and so we can draw them as two parallel wires to
illustrate this.

Definition 1.7.8 (Functor category [Leinster(2016), 1.3.6])

The functor category from C to D, denoted [C, D] or D€ isa category whose
objects are functors from C to D and whose arrows are natural transformations

between them, where composition is given by

and the identity is given by

Remark 1.7.9 (Indexed, labelled [Kostecki(2011), 4.5])

One can think of a functor category [C, D] or DC as a category of diagrams
in D indexed (or labelled) by the objects from C.

This particularly makes sense in a diagram.

Definition 1.7.10 (Natural isomorphism [Kostecki(2011), 4.2])

A natural transformation ¢ : ¥ — € between functors ¥ : C — D and
& : C — 9D is called a natural isomorphism or a natural equivalence, denoted
0: F = Z,if each component ox : #(X) — €(X) is an isomorphism in D, i.e.
F(X) = ¢(X).

ox
We call ¥ and € naturally isomorphic to each other.

We also say that #(X) = Z(X) naturally in X [Leinster(2016), 1.3.12].

Diagramatically,

22



Lemma 1.7.11 (Natural isomorphism [Leinster(2016), 1.3.10])

A natural isomorphism between functors from categories C and D is an
isomorphism in the functor category [C, D].

Definition 1.7.12 (Isomorphism of categories [Kostecki(2011), 4.3])

The cateories C and D are called isomorphic, denoted C = D, iff there exists
functors

C # D
such that
Ic=F % (1.7.13)
and
Ip=%eF (1.7.14)

Definition 1.7.15 (Equivalence of categories [Kostecki(2011), 4.3])

The categories C and D are called equivalent, denoted C =~ D, iff there exist
functors

F

D —
Ce——0D
together with natural isomorphisms

Ic=F e% (1.7.16)

and
CeF = 1p (1.7.17)

23



1.8 Representables

Remark 1.8.1 (Representables [Leinster(2016), ch. 4, 4.1.15])

A category is a world of objects, all looking at one another. Each sees the
world from a different viewpoint.

We may ask: what objects see? Fix an object, this can be described by the
arrows from it, this corresponds to the covariantly representable functor.

We can also ask the dual question: how objects are seen? Fix an object, this
can be described by the arrows into it, this corresponds to the contravari-
antly representable functor.

Definition 1.8.2 (Set-valued [Kostecki(2011), 4.4])
A functor % : C — Set is called set-valued.

Definition 1.8.3 (Hom-functor [Kostecki(2011), 3.1, example 10])

For every locally small category C, the covariant hom-functor, denoted

C(X,-):C — Set (1.8.4)
is given by

C(X,[x)

f I: —Cf
CX,[2)

g I: —eg
C(X,[w])
C CE) Set

Conversely, the contravariant hom-functor, denoted

C(-,X): C — Set (1.8.5)

is given by

24



C(1 X)

f e fe-

~

C([,X)
g |:> geo—

C(w] X)

cer e Set

Further, the hom-bifunctor, denoted

C(-,=):C? xC — Set (1.8.6)

defined as a contravariant hom-functor at first argument and as a covariant
hom-functor at second argument.

We see — and = as placeholders for any object and its “associated arrow” (whose
domain/codomain is the object, respectively) in the corresponding category:.
And we use boxes to mark the placeholder objects in diagrams.

Diagramatically [Leinster(2016), 4.1.22],

(B4R CJI¥D
f/l\ lg P lf o—eg
1.0 CI )

Definition 1.8.7 (Representable functor [Kostecki(2011), 4.4])

A set-valued functor & : C — Set is called covariantly representable if for
some X € C,

T F =C(X,-) (1.8.8)

where = denotes a natural isomorphism.

Conversely, a set-valued functor & : C°” — Set is called contravariantly
representable if for some X € C,

25



7:92=C(- X) (1.8.9)

Such an object X is called a representing object for the functor & or &, respec-
tively.

The pair (7, X) is called a representation of the functor # (respectively, & ).

Remark 1.8.10 (Representation [Leinster(2016), 4.1.3, 4.1.17])

A representation (7, X) of a representable functor F is a choice of an object
X € C and an isomorphism 7 between the corresponding type of hom-
functor and &.

Representable functors are sometimes just called representables. Only
set-valued functors can be representable.

Definition 1.8.11 (Yoneda embedding functors [Leinster(2016), 4.1.15])

Let C be a locally small category. The covariant Yoneda embedding functor of
C is the functor
H° . CP — [C,Set] (1.8.12)

defined on objects X by the covariant hom-functor on X.

This functor embeds what every object in C sees the “world” of the category C,
i.e. arrows from each object.

Conversely, the (contravariant) Yoneda embedding functor of C is the functor
He:C — [C, Set] (1.8.13)

defined on objects X by the contravariant hom-functor on X.

This functor embeds how every object in C is “seen”, i.e. arrows to each object.

e is a placeholder for an object. #X and % denote the corresponding Yoneda

embedding functors applied to X, and are called covariant/contravariant Yoneda

functors, respectively.

Diagramatically [Rosiak(2022), def. 161]:

26



.

cor 7 [C, Set] C —2 5 [C,Set]
X ——— Hom(X,-) X ———— Hom(-, X)
Y ——— Hom(Y, -) Y ——— Hom(-,Y)

When one speaks of the Yoneda (embedding) functor without specifying covari-
ant or contravariant, it means the contravariant one, because it’s the one used in

the Yoneda lemma.

Lemma 1.8.14 (Yoneda [Leinster(2016), 4.2.1])
Let C be a locally small category. Then

Nat(#yx, F) = F(X) (1.8.15)

naturally in X € C and & € [C°P, Set], where #x is the (contravariant)
Yoneda embedding functor on X, and Nat denotes all the natural transfor-
mations between the two functors.

Notation 1.8.16 (Yoneda lemma [Leinster(2016), 4.2.1])
Diagramatically, Nat(#x, F) is

and it’s also denoted by [C°F, Set] (#x, #) in the sense of Hom|cop get] (#x, F)
where [C°?, Set] is a functor category.

Remark 1.8.17 (Yoneda philosophy [Rosiak(2022), sec. 6.6])

The Yoneda lemma can be regarded as saying;:

To understand an object it suffices to understand all its relation-
ships with other things.

27



This is similar to the seventeenth-century philosopher Spinoza’s idea that
what a body is (its “essence”) is inseparable from all the ways that the body
can affect (causally influence) and be affected (causally influenced) by other
bodies.

The idea of Yoneda is that we can be assured that if a robot wants to learn
whether some object X is the same thing as object Y, it will suffice for it
learn whether

C(-,X)=C(-,Y) (1.8.18)

or, dually,

C(X,-)=C(Y,-) (1.8.19)

i.e. whether all the ways of probing X with objects of its environment
amount to the same as all the ways of probing Y with objects of its environ-
ment.

Lemma 1.8.20 (Full and faithful [Kostecki(2011), 4.8])
The Yoneda embedding functor %, : C — [CF, Set] is full and faithful.

Definition 1.8.21 (Ob, Arr [Leinster(2016), 4.1.6])

Given a small category C, there is a functor Ob : Cat — Set that sends C to its
set of objects where Cat is the category of small categories. Thus,

Z1(C) = Ob(C) (1.8.22)

where 7 is a Yoneda embedding functor.
This isomorphism is natural in C; hence Ob = Cat(1, -)
where Cat(1, —) is a covariant hom-functor.

Functor Ob is representable. Similarly, the functor Arr : Cat — Set sending a
small category to its set of arrows is representable.

Definition 1.8.23 (Presheaf [Leinster(2016), 1.2.15])
Let C be a category. A presheaf # on C is a functor C°? — Set.

28



It is called representable if ¥ = %#x for some X.

Notation 1.8.24 (Presheaf)

We'll use F to denote a presheaf since sheaf in French is faisceau.

29



Remark 1.8.25 (Presheaf and Yoneda lemma [Leinster(2016), 4.2.1])

The Yoneda lemma says that for any X € C and presheaf % on C, a natural
transformation #x — # is an element of % (X) of shape #x.

We may ask the question [Chen(2016), 68.6.4]:

What kind of presheaves are already “built in” to the category
c?

The answer by the Yoneda lemma is, the Yoneda embedding #., : C —
[CP, Set] embeds C into its own presheaf category.

In mathematics at large, the word “embedding” is used (sometimes infor-
mally) to meanamap i : X — Y that makes X isomorphic to its image in Y,
ie. X = i(X). [Leinster(2016), 1.3.19] tells us that in category theory, a full
and faithful functor .# : X — Y can reasonably be called an embedding, as
it makes X equivalent to a full subcategory of Y.

So, C is equivalent to the full subcategory of the presheaf category [C°F, Set]
whose objects are the representables.

Definition 1.8.26 (The category of presheaves [Kostecki(2011), 4.5, example 1])

The functor category of contravariant set-valued functors [C, Set], called the
category of presheaves or varying sets, the objects of which are contravariant
functors C°? — Set. It may be regarded as a category of diagrams in Set indexed
contravariantly by the objects of C.

By definition, objects of C play the role of stages, marking the “positions” (in
passive view) or “movements” (in active view) of the varying set # : C°? — Set.
For every X in C%, the set #(X) is a set of elements of & at stage X.

An arrow f : Y — X between two objects in C°7 induces a transition arrow

F(f) : F(X) = F(Y) between the varying set # at stage A and the varying set
F at stage B.

1.9 Basic types of diagrams

By ”basic types of diagrams”, we mean some basic structures inside a category.

Definition 1.9.1 (Diagram, shape [Leinster(2016), 5.1.18])

30



Let C be a category and J a small category. A functor & : § — C is called a
diagram in C of shape 7.

J is also called the indexing category of the diagram, and we say that & is a
diagram indexed by J [Rosiak(2022), example 35]. | is also called the template.

Definition 1.9.2 (Shape E [Leinster(2016), 5.14])
The diagram

L ——

8

is called a diagram of shape E.
For simplicity, we refer to a diagram of shape E by ”a shape E(f, g)".

”E” in ”shape E” stands for “equal”, and the reason will unfold in the definition
of equalizer.

Definition 1.9.3 (Fork [Leinster(2016), 5.4])
A fork over a shape E(f, g) is the diagram

E—‘)X#ﬁlf

that makes the diagram
E
S
f
X ——=Y
g
commute.

For simplicity, we refer to a fork by “a fork (E, t) (over the shape E(f, g))”.

Convention 1.9.4 (Grey arrow)

We use grey arrows to represent the composition arrow in a fork. This convention
is not from literatures and is subject to change.

Definition 1.9.5 (Equalizer [Leinster(2016), 5.1.11])

An equalizer of a shape E(f, g) is a fork (E, t) over it, such that, for any (-, d)
over the fork, the diagram

31



commutes (i.e. any arrow d : — — X must uniquely factor through E).

For simplicity, we refer to the equalizer of a shape E(f, g) as Eq(f, g), and ¢ is
the canonical inclusion.

We say that a category C has equalizers iff every shape E in C has an equalizer.

Remark 1.9.6 (Equalizing set [Kostecki(2011), eq. 32])

Equalizer in a category is a generalisation of a subset which consists of
elements of a given set such that two given functions are equal on them,
formally:

For any two arrows f, g : X — Y, their equalizing set E C X is defined as

E:={eleecXAf(e)=gle)} (1.9.7)

Definition 1.9.8 (Shape P [Leinster(2016), 5.14])
The diagram

is called a diagram of shape P.
For simplicity, we refer to a diagram of shape P by “a shape P(f, g)”.

”P” in ”"shape P” may stand for “product/projection/pullback”, and the reason
will unfold in the definition of pullback.

Definition 1.9.9 (Pullback (fiber product) [Kostecki(2011), 2.12])
A pullback of a shape P(f, g) is an object X Xo Y in C together with arrows px

32



and py, called projections, such that, for any object — and arrows h and k, the
diagram

commutes.

We say that a category C has pullbacks iff every shape P(f, g) in C has a pullback
inC.

A pullback is also called a fiber product.

The square

XxoY — 2 vy

PXJ \[8
X f) (0]

is called the pullback square of f and g. The object X Xop Y in C is called the
fiber product object.

Lemma 1.9.10 (Pasting pullbacks [Spivak(2013), 2.5.1.17])

Pullbacks can be pasted together, i.e. for diagram

17

o —> e —— o

given that the right-hand square is a pullback, the left-hand square is a
pullback if and only if the outer rectangle is a pullback.

33



Definition 1.9.11 (Shape T [Leinster(2016), 5.14])
The diagram

is called a diagram of shape T.

For simplicity, we refer to a diagram of shape T by “a shape T(X,Y)” where X
and Y are the 2 objects.

“T” in “shape T” stands for “two”. Shape T is useful in the definition of binary
product [Kostecki(2011), 2.18].

Definition 1.9.12 (Binary product [Kostecki(2011), 2.18])

A binary product of objects X and Y is an object X XY in C together with arrows
px and py, called projections, such that, for any object — and arrows & and k,
the diagram

commutes.

We say that a category C has binary products iff every pair X, Y in C has a binary
product X X Yin C.

When there is no confusion, we simply call bianry products products.

Definition 1.9.13 (Coshape, coequalizer, pushout (fiber coproduct), binary coprod-
uct [Kostecki(2011), 2.14, 2.16, 2.19])

coshape, coequalizer, pushout (fiber coproduct), binary coproduct can be
defined by reversing all arrows in the definitions of shape, equalizer, pullback
(fiber product), binary product respectively.

The pushout equivalent of the fiber product object in pullback is the fiber
coproduct object, denoted X +¢ Y, and the pushout equivalent of projections

34



in pullback are injections, denoted ix and 7y, respectively. The unique arrow of
a pushout is denoted [f, g].

The binary coproduct equivalent of the binary product object in binary product
is the binary coproduct object, denoted X + Y, and the binary coproduct
equivalent of projections in binary product are injections, denoted ix and
iy, respectively. The unique arrow of a binary coproduct is denoted [f, g].

Diagramatically,
* Coshapes:
- T=
. .
- E=
U E—
- P=

® coequalizer:

¢ pushout (fiber coproduct):

35



® binary coproduct:

Lemma 1.9.14 (Monic and pullback [Leinster(2016), 5.1.32])

An arrow X i> Y is monic iff the square

X —1 X
1\{ f

is a pullback.

The significance of this lemma is that whenever we prove a result about
limits, a result about monics will follow.



Lemma 1.9.15 (Epic and pushout [Leinster(2016), sec. 5.2])

An arrow X i) Y is epic iff the square

X<+—1 X
11\ f

is a pushout.

This is dual to Lemma 1.9.14.

Definition 1.9.16 (N-fold (co)products [Kostecki(2011), 2.22])

In any category with binary products the objects X X (Y X Z) and (X X Y) X Z
are isomorphic. In any category with binary coproducts the objects X + (Y + Z)
and (X +Y) + Z are isomorphic.

This allows to consider n-fold products X; X --- X X, and n-fold coproducts
Xi + -+ + X, of objects of a given category.

Definition 1.9.17 (Have finite (co)products [Kostecki(2011), 2.23])

A category which has n-fold (co)products for any n € N is said to have finite
(co)products.

1.10 Limits

37



Remark 1.10.1 (Limits [Leinster(2016), ch. 5])

Adjointness is about the relationships between categories. Representability
is a property of set-valued functors. Limits are about what goes on inside a
category.

Whenever you meet a method for taking some objects and arrows in a
category and constructing a new object out of them, there is a good chance
that you are looking at either a limit or a colimit.

Definition 1.10.2 (Cone [Leinster(2016), 5.1.19])

Let C be a category, J a small category, and & : J — C a diagram in C of
shape 7.

A cone on 9 is an object V € C (the vertex of the cone) together with a family

(V o, 9(]))}65 (1.10.3)

of arrows in C such that for all arrows | — ]’ in J, the diagram

\%4
7 N
e — e
2
J——7T J
commutes.

The family of arrows are components of a natural transformation 7 : Ay — J,
i.e. from the constant functor ( which assigns the same object V to any object J;
in ) to diagram functor 9.

For simplicity, we refer to a cone by “a cone (V, ) on 9”.

Example 1.10.4 (A cone on a diagram [Kostecki(2011), 4.9])

The cone for a diagram

38



is

P

D

=

which indeed looks like a cone with the vertex V.

Definition 1.10.5 (Limit [Kostecki(2011), 4.10])
A cone (V,m)on D : C — 9 is called a limit of &, denoted

lim & (1.10.6)

if the diagram

39




commutes for every cone (V, ) on 9.
The arrows 7; are called the projections of the limit.

Other possible terms of limit are limiting cone, universal cone.

Example 1.10.7 (Limits [Kostecki(2011), 4.11, example 1-4])

The basic types of diagrams are actually examples of limits:

1. binary product [Kostecki(2011), 2.18]:

shape cone limit

2. pullback (fiber product) [Kostecki(2011), 2.12]:

shape cone limit

<—
o<

3. equalizer [Leinster(2016), 5.1.11]:

shape cone limit




4. the limit of @ : 0 — C, where 0 is an empty category:

shape cone limit

<<

i.e. the terminal object 1 in C. In particular, for C = Set we have

LV =lmo={} (1.10.8)

Remark 1.10.9 (Cocone, colimit [Kostecki(2011), 4.10])

A cocone and a colimit are defined by dualization, that is, by reversing the
arrows in cone [Leinster(2016), 5.1.19] and limit [Kostecki(2011), 4.10].

In another word, given 2 : J°? — C°P, a cocone on & is a cone on 2,
a colimit of 9 is a limit of P [Leinster(2016), 5.2.1].

The arrows 7tj are called the coprojections of the colimit.

In the same say, one can and show that coequaliser, coproduct, pushout
and initial object are examples of colimits.

Lemma 1.10.10 (Limits via products and equalizers [Stacks Project Authors(2017),
002N, 002P])

If all products and equalizers exist, all limits exist.

Dually, if all coproducts and coequalizers exist, all colimits exist.

Definition 1.10.11 (Has (finite) limits, (finitely) complete, left exact [Kostecki(2011),
4.10])

We say that a category C has (finite) limits or is (finitely) complete if every
diagram 9 : J — C, where J is a (finite) category, has a limit.

A category C is called left exact iff it is finitely complete.

41



Remark 1.10.12 ((finitely) cocomplete, right exact [Kostecki(2011), 4.10])

Dually to Definition 1.10.11, when every diagram & : J — C, where J is
a (finite) category, has a colimit, it is said that the category C has (finite)
colimits or is (finitely) cocomplete.

A category is called right exact iff it is finitely cocomplete.

Lemma 1.10.13 ((finitely) (co)complete category [Kostecki(2011), 4.14])

A category C is (finitely) complete if it has a terminal object, equalizers and
(finite) products, or if it has a terminal object and (finite) pullbacks.

Dually, a category C is (finitely) cocomplete if it has an initial object, co-
equalizers and (finite) coproducts, or if it has an initial object and (finite)
pushouts.

Lemma 1.10.14 ((co)complete functor category [Kostecki(2011), 4.15])

If category D is complete and category C is small, then the functor category
DC is complete.

Dually, if category D is cocomplete and category C is small, then the functor
category DC is cocomplete.

Definition 1.10.15 (Preorder, partial order, total order [Kostecki(2011), 1.2,

example 9])

Let P be a set. The properties

o (reflexivity) Vpe P,p <p

e (transitivity) Vp,q,r € P,p<gAq<r=p<r

define a preorder (P, <).

A partially ordered set (called a partial order, or a poset) is defined as a preorder
(P, <) for which

* (antisymmetry) Vp e P,p<qAq<p=p=9g

holds.

42



A total order (or a linear order) is a partial order (P, <) for which

¢ (comparability) Vp,g € P,p<gVg<p

The category Preord consists of objects which are preorders and of arrows which
are orderpreserving functions.

The category Poset consists of objects which are posets and of arrows which are
order-preserving functions between posets, that is, the maps T : P — P’ such
that

p<q=T{p) <T() (1.10.16)

Any any preorder (P, <) and poset (P, <) can be considered as a category
consisting of objects which are elements of a set P and arrows defined by
p—oqgé&p=<gq.

Definition 1.10.17 (Directed poset [Rosiak(2022), def. 285])

A directed poset is a poset that is inhabited (nonempty) and for which every
finite subset has an upper bound. Explicitly,

e (directedness) Vx,y € P,3z € P,x<zAy <z

Example 1.10.18 (Preorder, poset, directed poset)

An example of a preorder category which is not poset is:

Anexample of a poset category which is not a directed poset is [Rosiak(2022),
example 3] :

NI

An example that is a directed poset category but not a total order is:

43



(]
L] / \ [ ]
[ ]
where each pair of nodes has a common upper bound (thus satisfying
directedness), but there is no path between the two nodes on the center, thus
violating comparability.

A more complicated example of a directed poset category which is not a
total order is [Spivak(2013), example 3.4.1.3]:

T\/ N
L N

One can see immediately that this is a preorder because length=0 paths
give reflexivity and concatenation of paths gives transitivity. To see that it is
a partial order we only note that there are no loops.

To see thatitis a poset, we note that every pair of nodes from one side or both
sides has the central node as an upper bound, thus satisfying directedness.

But this partial order is not a total order because there is no path (in either
direction) between some nodes, thus violating comparability.

Definition 1.10.19 (Inverse limit, projective limit [Kostecki(2011), 4.11])

Let J be a directed poset and & : J — C be a contravariant functor. The
limit of # is called an inverse limit or projective limit, and is denoted h? or

simply l(iin F.

Definition 1.10.20 (Direct limit, inductive limit [Kostecki(2011), 4.12])

Let J be a directed poset and & : J — C be a contravariant functor. The
colimit of & is called a direct limit (some called directed limit) or inductive
limit, and is denoted li% F, or simply lim &

-, —

This is dual to inverse limit.

44



Definition 1.10.21 (Preserves (all) (co)limits, left/right exact [Kostecki(2011),
4.13])

A functor  : C — D preserves (all) limits and is called left exact iff it sends
all limits in C into limits in D.

Dually, a functor & : C — D preserves (all) colimits and is called right exact
iff it sends all colimits in C into colimits in D.

Remark 1.10.22 (Directions in (co)limits)

Limit Colimit
N N
v i
v v
7 N 7N
[ P
I e
diagram o=———00 A————0
arrows through the vertex into the diagram out of the diagram
on (co)shape P pullback pushout
categories have finite ... left exact right exact
functors preserve all ... left exact right exact
on directed poset inverse/projective limit lim %  direct/inductive limit lim &
— —

One can see from the table that, in general, limits have the direction “back”
”into” (where “back”, “left”, “inverse” are directional consistent), and
colimits have the opposite: “forward” ”out of”.

This might help to memorize the directions in these concepts without

disorientation.

1.11 Adjunctions

Definition 1.11.1 (Adjoint functor [Kostecki(2011), 5.1])

Given functors

C——0o

%
we say Z and Z are a pair of adjoint functors, or together called an adjunction

between them, & is called left adjoint to %, and £ is called right adjoint to &,
denoted

FLAR:C2D (1.11.2)

45



or

—

iff there exists a natural isomorphism ¢ between the following two hom-bifunctors:

D(Z(-),=) = C(-, %(=)) (111.3)

diagramatically,

C(-%(=))

The components of the natural isomorphism ¢ are isomorphisms

oxy : D(Z(X),Y) =C(X, Z(Y)) (1.11.4)

Remark 1.11.5 (Adjoint functor [Kostecki(2011), 5.1])

An adjunction & 4 & means arrows &(X) — Y are essentially the same
thing as arrows X — Z(Y) forany X e Cand Y € D.

This means the diagram

Z(x)o—oy

|

oxy oxy’

xe—eR(y) ¢

commutes for any arrows f : Z(X) — Yin D.

The above can also be diagramatically denoted by transposition diagram




R
x 5 x 2 gy 2% gy

(1.11.6)
gxy 2% ey L v L v
or simply,
X - R(Y) (©)
ST & 1.11.7)

An adjunction is a concept that describes the relationship between two
functors that are weakly inverse to each other [Nakahira(2023), sec. 4].

By “weakly inverse”, we don’t mean that applying one after the other gives
the identity functor, but in a sense similar to eroding (i.e. enhancing holes)
and dilating (i.e. filling holes) an image, applying them in different order
yeilds upper/lower “bounds” of the original image [Rosiak(2022), sec. 7.1].

Notation 1.11.8 (String diagrams: adjunction [Nakahira(2023), sec. 3.1])

Here we follow the string diagram style of [Marsden(2014)] and [Sterling(2023)],
but with additional string diagram types inspired by [Nakahira(2023), eq. 3.1,
4.3].

1. The covariant hom-functor C(X, —), denoted —%, can be represented in
string diagrams as

g
|

where the dotted circle denotes any arrows with the domain X and codomain

2. The contravariant hom-functor C(—, X), denoted X~, can be represented
in a similar manner.

3. The hom-bifunctor C(—, =), also denoted =", can be represented as

47



where the dotted circle denotes any arrows with the domain — and codomain

4. The natural isomorphism

D(Z(-),=) = C(—, R(=)) (1.11.9)

in adjunction can be represented as

1[ DN = 1 c
B

Definition 1.11.10 (Transpose [Kostecki(2011), 5.1])

Given an adjunction & 4 % : C 2 D, there exists f* and g” such that the
diagrams

X — 5 am X — & s ) ©)
Z(X) T> Y Z(X) — Y D)

commute for any arrow f : X — R(Y)inC, g: L(X) - Yin D.
f#is called the left transpose of f. g is called the right transpose of g.

Other possible terms are left/right adjunct of each other, and mates [nLab(2023)].

48



Remark 1.11.11 (Idempotent [Zhang(2021), 5.30])

Given an adjunction £ 4 % : C 2 D, we may obtain two endofunctors
ZLoeR:C—Cand ZeZ:D — D that commute the diagram

that means they are both idempotent, i.e. applying £ e % any times yields
the same result as applying it once, and similarly for % e Z.

Definition 1.11.12 ((co)unit [Zhang(2021), 5.30])

Given an adjunction Z 4 Z : C 2 D, the natural transformation

nile— LeR (1.11.13)

is called the unit of the adjunction, and

€ ReL — 1p (1.11.14)
is called the counit.
We call an arrow
nx : X = (£ e Z)(X) (1.11.15)
a unit over X, and
ey : (ZeZ)Y)> Y (1.11.16)

a counit over Y. They are components of the natural transformations 7 and €,
respectively.

Diagramatically, the diagrams

49



commute.

Lemma 1.11.17 (Universality of (co)unit [Kostecki(2011), 5.3])

The unit 17 and counit € of an adjunction & 4 % : C 2 D are universal, i.e.
the diagram

nx

X —™ s 2(X)
| |
4 L
° Y
(o4 D
commutes for any f € C, and the diagram
Y¢+—F R(Y)
0 0
|
P : % :gb
| |
|
. X
D C

commutes for any g € D.




Lemma 1.11.18 (Triangle identities [Kostecki(2011), 5.4])
Given an adjunction £ 4 % : C 2 D, the diagrams

A
72— yegey F—" S FeFeR

iy lé‘ 4 ia l@(e)
< R

commute.

Note that Z in € is a subscript, meaning € : D — D, Z(X) = ey (x)
for X € C. Similar for ng.

Lemma 1.11.19 (Snake identities [Nakahira(2023), thm. 4.8])

Continuing from Notation 1.11.8, the triangle identities can be represented
in string diagrams as follows, and called the snake identities (or zig-zag
identities):

& &
1\¢) = ¢ | D
& &
R R
e/q) = D | cC
7 7

where

51



are the unit and counit of the adjunction, respectively.

Notation 1.11.20 (String diagram: snake identities [Nakahira(2023), thm. 4.8])

Following Notation 1.7.4, recall that a string diagram is composed from top to
bottem, left to right, we can read the left snake

<

\
(n\e€)

\

4

in snake identities as
(neZ)e(Zec)
F— s P (1.11.21)

where each pair of parentheses corresponds to an overlay in the string diagram,
and this is equivalent to

Z(n)
S —— L oeRe YL

€z
1y

<

in triangle identities.

52



Lemma 1.11.22 ((co)unit and transposes [Leinster(2016), 2.2.4])

Given an adjunction

o " D

R

with unit 77 and counit €, the diagrams

C D

[~

h=nx e Z(h¥) (1.11.23)

and

C D

fi%}l

° ° Ii
‘Xﬂl
Y

fr=2(f)eey (1.11.24)

commute.

Notation 1.11.25 (String diagrams: (co)unit and transposes [Marsden(2014), lem.
3.6])

In string diagrams, Lemma 1.11.22 can be represented as:

53



n = h
Kt \

Y R Y R
X X
€ =
f \
Y < Y <

Remark 1.11.26 (Topologically plausible [Leinster(2016), 2.2.9])

The string diagrams in Lemma 1.11.19 and Notation 1.11.25 are topolog-
ically plausible equations, i.e. the equality can be obtained by simply
pulling the string straight.

Lemma 1.11.27 ((co)unit and natural isomorphism [Kostecki(2011), eq. 127])

The natural transformation oxy and txy that are the components of the
natural isomorphism in the adjunction & 4+ % : C 2 D are related to the
unit and counit of the adjunction:

oxv(f) = nx « ()

- (1.11.28)
xy(8) = Z(g°) e €y
and they are reverse of each other
OxY = Tyy (1.11.29)

Proof. This can be read out from the diagrams in universality of (co)unit
[Kostecki(2011), 5.3] and transpose [Kostecki(2011), 5.1]. O

54



Lemma 1.11.30 (Uniqueness of adjoints [Kostecki(2011), 5.8])

A left or right adjoint, if it exists, is unique up to natural isomorphism.

Proof. For the left adjoint, from the university of 7 it follows that there
exists a unique, up to isomorphism, isomorphism between different left
adjoints. It remains to show naturality of this isomorphim, which is left as
an exercise. The proof for right adjoint follows by duality. m]

Theorem 1.11.31 (Adjunction via (co)units [Leinster(2016), 2.2.5])

Given categories and functors

C D

R

there is a one-to-one correspondence between the adjunction & 4 # and
the pairs of natural transformations 1 and € satisfying the the triangle
identities.

Proof. From Lemma 1.11.18, it follows that every adjunction between &
and % gives rise to a pair of transformations 1 and € satisfying the triangle
identities.

To show that there exists a unique adjunction for 7 and €, the uniqueness

follows from Lemma 1.11.22, the existence can use the construction in the
spirit of Definition 1.11.10. ]

Theorem 1.11.32 (Adjunction via initial objects [Leinster(2016), 2.3.6])

Given categories and functors

o " D

R

there is a one-to-one correspondence between:

1. the adjunction & 4 %

55



2. natural transformations 1 : 1o — £ e & such that nx is initial in the
comma category X = % for every X € C

Diagramatically,
X
* e ———— > o L4
<z |
| s a
<~
* e ———— > o L4
1 C D

where the functor X is the constant object functor.

1.12 Interactions

Remark 1.12.1 (Interactions [Leinster(2016)])

In this section, we will discuss the interactions between

¢ (co)limits
* adjunctions

* representables

and their relationships with universal properties.

Lemma 1.12.2 (Adjunction preserves (co)limits [Leinster(2016), 6.3.1])

Given an adjunction & 4 # : C 2 D, & preserves colimits, and %
preserves limits.

Explictly, given 9 : J — C, we have

(colim @) @ Z = colim(P o Z) (1.12.3)

and given @' : J — O, we have

56



(im @) e & = lim(D’ & R) (1.12.4)

Corollary 1.12.5 (A representation is a universal element [Leinster(2016),
43.2))

Let C be alocally small category and &% : C°? — Set. Then a representation
of # consists of a pair (X, #) such that the diagram

> >

C(X,0)

hd

| 6)
I
I
|
I
| v ~N-
% € c(Y,0)
op
C SC0) Set

commutes.

Remark 1.12.6 (Universal element [Leinster(2016), 4.3.2])

Pairs (Y,y) with Y € C and y € #(Y) in Corollary 1.12.5 are sometimes
called elements of the presheaf &.

Indeed, Lemma 1.8.14 (Yoneda) tells us that ¥ amounts to a generalized
element of # of shape 7.

An element u satisfying condition in Corollary 1.12.5 is sometimes called a

universal element of #. So, Corollary 1.12.5 says that a representation of
a presheaf # amounts to a universal element of &.

57



Lemma 1.12.7 (Adjunction and representable [Leinster(2016), 4.1.11])

Any set-valued functor with a left adjoint is representable.

Definition 1.12.8 (Cone as a natural transformation [Leinster(2016), eq. 6.1])

Now, given a diagram & : J — C and an object V € C, a cone on & with
vertex V is simply a natural transformation from the diagonal functor Ay to the
diagram 2.

Writing Cone(V, D) for the set of cones on & with vertex V, we therefore have

Cone(V,92) = [J,Cl(Av, D). (1.12.9)

Thus, Cone(V, @) is functorial in V (contravariantly) and 9 (covariantly).

Lemma 1.12.10 (Limit via representation [Leinster(2016), 6.1.1])

Let J be a small category, C a category, and & : J — C a diagram. Then
there is a one-to-one correspondence between

e limit cones on 9

e representations of the natural transformation Cone

with the representing objects being the limit objects (i.e. the vertices) of 9.
Briefly put: a limit (V, 7t) of 9 is a representation of [T, C](A_, 9).

Diagramatically,

58



It implies that

Cone(—,92) =C (—, li? QZ) (1.12.11)

for any — € C.

Lemma 1.12.12 (Representables preserve limits [Leinster(2016), 6.2.2])

Let & be a locally small category and X € C. Then C(X,-) : C — Set
preserves limits.

Proof. It follows from Lemma 1.12.10 and that [Leinster(2016), 6.2.1]
Cone(X,9) = Ii?C(X,QZ) (1.12.13)

naturally in X and 9. O

59



Lemma 1.12.14 (Limits commute with limits [Leinster(2016), 6.2.8])

Let 7 and J be small categories. Let C be a locally small category with
limits of shape I and of shape 7.

Define
2*: I — [j/ C]
I & 920,-) (1.12.15)
and
De: I — [IIC]
1.12.16
]~ 2] FRE
Then forall 2 : 7 X 9 — C, we have
limlim2°® = lim 9 = lim 9, (1.12.17)

—9 T —I19 —I<9g

and all these limits exist. In particular, C has limits of shape 7 x 7.

Lemma 1.12.18 (Colimits commute with colimits [Leinster(2016), 6.2.10])

Dual to Lemma 1.12.14, colimits commute with colimits.

Remark 1.12.19 ( [Leinster(2016), 6.2.10])

Limits do not in general commute with colimits.

Some special cases where they do:

¢ filtered colimits commute with finite limits [Stacks Project Authors(2017),
002W].

60


https://utensil.github.io/forest/tt-0050.xml

Lemma 1.12.20 (Initial and terminal objects via adjunction [Leinster(2016),
2.1.9])

Initial and terminal objects can be described as adjoints. Let C be a category.
There exist the unique functor ! : C — 1, and a constant object functor
X : 1 — C for each object X.

A left adjoint to ! is exactly an initial object of C:

04!:12¢C (1.12.21)

Similarly, a right adjoint to ! is exactly a terminal object of C:

l41:C =21 (1.12.22)

Proof. In both cases, being an adjunction gives an isomorphism for each
object X, one side of the isomorphism is 1(x,+) which is just 1., and the
other side are C(0, X) or C(X, 1), and the isomorphism establishes the
uniqueness of the arrows (from 0 or to 1) for each object. The initial or
terminal object exists if the corresponding adjunction exists. ]

Lemma 1.12.23 ((co)limits via adjunction [Rosiak(2022), example 200])

(Co)limits can be phrased entirely in terms of adjunctions:

colim

0T ¢—a—c
U

lim

The advantages of this adjunction perspective is that the (co)limit of every
J -shaped diagram in C can be defined all at once.

1.13 Cartesian closed categories

Definition 1.13.1 (Evaluation [Leinster(2016), 6.2.4])
Let S be a small category, C a locally small category. For each X € S, there is a

61



functor
evx : [S,C] — C

¥ o FX) (1.13.2)
called evaluation at X.
Given a diagram @ : J — [S, C], we have for each X € § a functor
Deevx: I = € (1.13.3)

] = 20)X)

We write 9 e evy as 2(—)(X).

Definition 1.13.4 (Cartesian product functor [Kostecki(2011), 5.13])

If C is a category with binary products, we can define for every X the cartesian
product functor X X () : C — C, with the following action:

(XX ())(Y) = X xY

(XX () = idx xf

Definition 1.13.6 (Exponential [Kostecki(2011), 5.13])

If for X € C, a cartesian product functor X X (—) has a right adjoint, it is called
an exponential or the exponential object, denoted (—)*.

(1.13.5)

Explicitly, X X (=) 4 (=)X means there is a natural isomorphism of bifunctors
Hom(X X (=), —) = Hom(-, (-)¥X), i.e. for any arrow f : X X Y — Z there is a
unique arrow f° : Y — Z¥, which is the transpose of the adjunction, called
exponential transpose.

The arrow ev : X X (—)X — (=) is called the evaluation arrow of the exponential,
and is the counit of the adjunction.

Diagramatically, the diagram

XxzX — s 7
AN
I
lxxfbi f
I

XxXY

commutes.

We say that category C has exponentials if for any X € C, there exists an
exponential (-)X.

62



Definition 1.13.7 (Cartesian closed category [Kostecki(2011), 5.14])

A category C is called cartesian closed iff C has exponentials and has finite
products.

Definition 1.13.8 (Power object [Kostecki(2011), 6.8])

The power object P(X) of an object X in a cartesian closed category C with
subobject classifier Q is defined as the exponential object QX.

If QX exists for any X in C, we say that C has power objects.

Lemma 1.13.9 (Properties of cartesian closed categories [Kostecki(2011),
5.15])

For any cartesian closed category C, and any objects X, Y, Z of C, we have

1. 0x X = 0if 0 existsinC
2.1 xX =X

3. X0 = 1if 0 exists in C
4 X=X

5. 1%

1R

1

6. X XY=YXxX

7. (XXY)XZ=2XX(YXZ)

8. YX x ZX = (Y xZ2)X

9. ZXX¥ = (zX)"

10. X+Y=Y+X

11. X+Y)+Z=X+(Y+2)

12. ZX x Z¥ = ZX*Y if C has binary coproducts

13. (X XY)+ (X xZ) = XX (Y +Z)if C has binary coproducts

1.14 Subobject classifier

Definition 1.14.1 (Category of elements [Leinster(2016), 6.2.16])

Let C be a category and & : C°? — Set a presheaf on C. The category of
elements E(X') of X is the category in which:

63



X x (X, %)
X’ x’ (X7, x")

C L C% — Set &)

There is a projection functor & : E(2) — C defined by #(X,x) = X and
P(f)=f.

The Yoneda lemma implies that for a presheaf 2, the generalized elements of
X of representable shape correspond to objects of the category of elements.

64



Theorem 1.14.2 (Density [Leinster(2016), 6.2.17])

Let C be a small category and & a presheaf on C. Then & is the colimit of
the diagram

e@) S c e, set] (1.14.3)
in [C°, Set], i.e.
L= lim (PeH.) (1.14.4)
—8E(2)

where () is the category of elements, & the projection functor in it,
and H, the (contravariant) Yoneda embedding.

This theorem states that every presheaf is a colimit of representables in
a canonical way. It is secretly dual to the Yoneda lemma. This becomes
apparent if one expresses both in suitably lofty categorical language (that
of ends, or that of bimodules).

Definition 1.14.5 (Subobject classifier [Kostecki(2011), 6.4])

A subobiject classifier is an object Q) in C, together with an arrow T : 1 — Q,
called the true arrow, such that for each monic arrow m : Y +— X thereis a
unique arrow x : X — (), called the characteristic arrow of m (or of Y), such
that the diagram

Y - >1
X ===~ O

is a pullback, where ! is the unique functor.

Q) is also called a generalized truth-value object.

The arrow (e T): Y Sl Q is often denoted as Ty : Y — Q.

65



Lemma 1.14.6 (Isomorphism to class of subobjects [Kostecki(2011), 6.7])
In any category C with a subobject classifier Q,

Sub(X) = C(X, Q) (1.14.7)

i.e. the class of subobjects of an object X in C is isomorphic to the class of
arrows from X to Q.

Proof. It follows from the definitions and Lemma 1.9.14 that for every f :
Y — X and [f] € Sub(X),

* (surjection) x(f) € C(X, Q)

e (injection) for every h : X — Q, x(f) = h since

S S > 1
X -—=5--2>Q
is a pullback. o

Definition 1.14.8 (Power object functor [Kostecki(2011), 6.8])

The contravariant power object functor & : C°? — C, given by

P X - QX (1.14.9)
for X € Ob(C)

and such that 2(f) : Q¥ — QX for f : X — Y in C is given by
PHY)={xeX]| f(x) €Y} (1.14.10)
When power object is defined for cartesian closed categories, we have

XXY—-Q

T OF (1.14.11)

thus for every category with power objects

66



Hom(X x Y, Q) = Hom (Y, Q¥) (1.14.12)

This equation, together with Lemma 1.14.6 written in the form Sub(X X Y) =
Hom(X XY, Q), gives the isomorphism

Sub(X X Y) = Hom(Y, 2(X)) (1.14.13)

2 Topos theory

Definition 2.0.1 (Topos [Kostecki(2011), 7.1])

A topos or elementary topos is a category satisfying one of these equivalent
conditions:

e itis a complete category with exponentials and subobject classifier
e itis a complete category with subobject classifier and its power object

e itis a cartesian closed category with equalizers and subobject classifier

Since the completeness of a category with subobject classifier implies its co-
completeness. Thus a topos not only has all finite limits, but also has all finite
colimits.

This means that topos is such category which has, in particular,

1. terminal object

2. equalizers

3. pullbacks

4. all other limits

5. exponential objects

6. subobject classifier

67



Remark 2.0.2 (Topoi, toposes [Kostecki(2011), 7.1])

The name “topos” originates from the Greek word “Tomog”, meaning a
place, as topos could mean a place of geometry, and at the same time as a
place of logic.

Following the ancient Greek naming convention, the plural of topos is
topoi, but people also use toposes. We use them interchangeably.

Example 2.0.3 (Topos)

Topos theory unifies, in an extraordinary way, important aspects of geome-
try and logic.

Grothendieck topos was first introduced by Grothendieck to generalize
topological space [Kostecki(2011), 7.2]:

every space gives rise to a topos (namely, the category of sheaves
on it).

Topological properties of the space can be reinterpreted in a useful way as
categorical properties of its associated topos.

Elementary topos was introduced by Lawvere and Tierney, to generalize
Set. A topos can be regarded as a "universe of sets’ [Leinster(2016), 6.3.20].
Set is the most basic example of a topos, and every topos shares enough
features with Set that [source]

anything you really really needed to do in the category of sets
can be done in any topos.

Every presheaf category, is a topos. [Leinster(2016), 6.3.27]

A topos can allow the interpretation of a higher-order logic. In particular,
objects can be seen as collections of elements of a given type, subobjects are
viewed as propositions. Products and coproducts are interpreted as con-
junction and disjunction respectively. For an introduction, see [Pitts(2001)].

Definition 2.0.4 (Geometric morphism, Topoi [Kostecki(2011), 7.2])

If &1 and &, are toposes, then a geometric morphism & : & — &g is defined
as a pair of adjoint functors &* 4 &, between &; and &,, such that £* preserves

68


https://www.classe.cornell.edu/spr/2001-01/msg0030351.html

finite limits (i.e. is left exact), which implies &. preserves colimits (i.e. is right
exact).

The category of toposes and their geometric morphisms is denoted Topoi.

3 Appendix

These are my notes on:

Category theory
Topos theory

Type theory

Sheaf theory
Differential sheaves

SDG (Synthetic Differential Geometry)

The primary references for these notes are:

[Kostecki(2011)] for a clean introduction from category theory to topos
theory

[Leinster(2016)] for its breakdown and simplification of category theory
[Kostecki(2009)] for its introduction to SDG

[Rosiak(2022)] for its sheaf examples

[Mallios and Zafiris(2015)] for its introduction to Differential sheaves
[Rosiak(2022)] for its examples of sheaves

[Zhang(2021)] for a friendly introduction to type theory using the language
of category theory

[Chen(2016)] for various preliminaries on category theory

[Sterling(2023)] for its introduction to models of type theory, and extensive
use of string diagrams in the style of [Marsden(2014)]

[Fauser(2004)] for the use of Kuperberg graphical calculi over commutative
diagrams

For draft notes, see drafts for Notes on Topos Theory and Type Theory.

69


https://utensil.github.io/forest/tt-000L.xml

References

[Chen(2016)] Evan Chen. 2016. An infinitely large napkin. (Cited in sections 1.8.25
and 3)

[Fauser(2004)] Bertfried Fauser. 2004. Grade free product formulae from
Grafimann-Hopf gebras. Clifford Algebras: Applications to Mathematics,
Physics, and Engineering (2004), 279-301. https://arxiv.org/abs/
math-ph/0208018 (Cited in section 3)

[Fong and Spivak(2018)] Brendan Fong and David I Spivak. 2018. Seven
sketches in compositionality: Aninvitation to applied category theory. arXiv
preprint arXiv:1803.05316 (2018). https://arxiv.org/abs/1803.05316
(Cited in sections 1.1.4 and 1.6.2)

[Freyd(1976)] Peter Freyd. 1976. Properties invariant within equivalence types
of categories. In Algebra, Topology, and Category Theory. Elsevier, 55-61.
http://angg.twu.net/Freyd76.html (Cited in section 1.6.2)

[Kostecki(2009)] Ryszard Pawel Kostecki. 2009. Differential Geometry in
Toposes. https://www.fuw.edu.pl/~kostecki/sdg.pdf (Cited in section 3)

[Kostecki(2011)] Ryszard Pawet Kostecki. 2011. An Introduction to Topos Theory.
Technial Report (2011). https://www.fuw.edu.pl/~kostecki/ittt.pdf
(Cited in sections 1.1.1, 1.1.4,1.1.5, 1.1.11, 1.1.12,12.1,1.2.2,1.2.3,1.2.5,1.3.1,1.3.2, 1.33, 1.34,
135,1.3.6,1.3.8,13.13,14.1,14.2,1.45,14.6,14.7,15.1,152,1.5.5,15.8,1.5.10,1.6.1,1.6.4,
1.7.3,1.79,1.7.10,1.7.12,1.7.15,1.8.2,1.8.3,1.8.7, 1.8.20, 1.8.26,1.9.6, 1.9.9, 1.9.11, 1.9.12, 1.9.13,
1.9.16,1.9.17,1.104,1.10.5,1.10.7, 1,2, 1.10.9, 1.10.11, 1.10.12, 1.10.13, 1.10.14, 1.10.15, 1.10.19,
1.10.20, 1.10.21, 1.11.1, 1.11.5, 1.11.10, 1.11.17, 1.11.18, 1.11.27, 1.11.27, 1.11.30, 1.13.4, 1.13.6,
1.137,1.13.8,1.13.9, 1.14.5, 1.14.6, 1.14.8,2.0.1,2.0.2, 2.0.3, 2.0.4, and 3)

[Leinster(2016)] Tom Leinster. 2016. Basic category theory. arXiv preprint
arXiv:1612.09375 (2016). https://arxiv.org/abs/1612.09375 (Cited in
sections 1.1.7,1.3.4,1.3.9,1.3.10,1.3.11, 1.3.12, 1.3.16, 1.3.18, 1.4.3,1.5.3,1.5.5,1.5.9,1.6.2, 1.6.3,
1.71,178,1.7.10,1.7.11,1.8.1,1.8.3,1.8.10,1.8.11, 1.8.14, 1.8.16, 1.8.21, 1.8.23,1.8.25,1.9.1,1.9.2,
1.9.3,195,198,19.11,1.9.14,1.9.15,1.10.1, 1.10.2, 3, 1.10.9, 1.11.22, 1.11.26, 1.11.31, 1.11.32,
1.12.1,1.12.2,1.12.5,1.12.6,1.12.7,1.12.8,1.12.10,1.12.12, 1.12.14, 1.12.18, 1.12.19, 1.12.20, 1.13.1,
1.14.1,1.14.2,2.0.3, and 3)

[Mallios and Zafiris(2015)] Anastasios Mallios and Elias Zafiris. 2015. Differen-
tial sheaves and connections: a natural approach to physical geometry. Vol. 18.
World Scientific. (Cited in section 3)

[Marsden(2014)] Daniel Marsden. 2014. Category theory using string diagrams.
arXiv preprint arXiv:1401.7220 (2014). (Cited in sections 1.1.14, 1.7.4, 3, 1.11.8, 1.11.25,
and 3)

[Nakahira(2023)] Kenji Nakahira. 2023. Diagrammatic category theory. arXiv
J g gory Yy
preprint arXiv:2307.08891 (2023). (Cited in sections 1.1.4, 1.1.12, 1.1.13, 1.5.4, 1.5.5,
1.7.2,1.11.5,1.11.8,1.11.19, and 1.11.20)

70


https://arxiv.org/abs/math-ph/0208018
https://arxiv.org/abs/math-ph/0208018
https://arxiv.org/abs/1803.05316
http://angg.twu.net/Freyd76.html
https://www.fuw.edu.pl/~kostecki/sdg.pdf
https://www.fuw.edu.pl/~kostecki/ittt.pdf
https://arxiv.org/abs/1612.09375

[nLab(2020)] nLab. 2020. universal construction - nLab. https://ncatlab.
org/nlab/show/universal+construction (Cited in section 1.6.2)

[nLab(2023)] nLab. 2023. adjunct - nLab. https://ncatlab.org/nlab/show/
adjunct (Cited in section 1.11.10)

[Ochs(2022)] Eduardo Ochs. 2022. On the the missing diagrams in Category
Theory (first-person version). arXiv preprint arXiv:2204.10630 (2022). https:
//arxiv.org/abs/2204.10630 (Cited in section 1.6.2)

[Pitts(2001)] Andrew M Pitts. 2001. Categorical logic. Handbook of logic in
computer science 5 (2001), 39-128. (Cited in section 2.0.3)

[Riehl(2017)] Emily Riehl. 2017. Category theory in context. Courier Dover
Publications. (Cited in section 1.6.2)

[Rosiak(2022)] Daniel Rosiak. 2022. Sheaf theory through examples. MIT Press.
(Cited in sections 1.8.11, 1.8.17,1.9.1, 1.10.17, 1.10.18, 1.11.5, 1.12.23, and 3)

[Spivak(2013)] David I Spivak. 2013. Category theory for scientists. arXiv
preprint arXiv:1302.6946 (2013). (Cited in sections 1.9.10 and 1.10.18)

[Stacks Project Authors(2017)] The Stacks Project Authors. 2017. Stacks Project.
http://stacks.math.columbia.edu (Cited in sections 1.10.10 and 1.12.19)

[Sterling(2023)] Jon Sterling. 2023. Notes on models of type theory. https:
//www. jonmsterling.com/jms-00DJ.xml (Cited in sections 3, 1.11.8, and 3)

[Zhang(2021)] Tesla Zhang.2021. Type theories in category theory. arXiv preprint
arXiv:2107.13242 (2021). (Cited in sections 1.1.7, 1.11.11, 1.11.12, and 3)

71


https://ncatlab.org/nlab/show/universal+construction
https://ncatlab.org/nlab/show/universal+construction
https://ncatlab.org/nlab/show/adjunct
https://ncatlab.org/nlab/show/adjunct
https://arxiv.org/abs/2204.10630
https://arxiv.org/abs/2204.10630
http://stacks.math.columbia.edu
https://www.jonmsterling.com/jms-00DJ.xml
https://www.jonmsterling.com/jms-00DJ.xml

Alphabetical Index

(co)universal arrow,
16

(covariant) functor,
11

(finitely) cocomplete,
42

(finitely) complete,
41

Adjoint functor, 45
Adjunct, 48
Adjunction, 45
Arrow, 1,5

Arrow diagram, 4
Associativity, 2

Binary coproduct, 34
Binary coproduct
object, 35
Binary product, 34
Boldface uppercase
Roman
letter, 5
Bound object, 8

Canonical inclusion,
32
Cartesian closed, 63

Cartesian product
functor, 62
Category, 1, 4
Category of
elements,
63
Characteristic arrow,
65
Class of subobjects, 9
Cocone, 41
Codomain, 1
Coequalizer, 34
Colimit, 41
Comma category, 17
Commuting
diagram, 3

Component, 18
Composition, 1
Cone, 38
Constant functor, 14
Constant object
functor, 14
Contravariant
functor, 12
Contravariant hom-
functor, 24
Contravariantly
functorial
in, 13
Contravariantly rep-
resentable,
25
Contravariantly rep-
resentable
functor, 24
Coprojection, 41
Coshape, 34
Counit, 49
Covariant hom-
functor, 24
Covariant Yoneda
embedding
functor, 26
Covariantly repre-
sentable, 25
Covariantly repre-
sentable
functor, 24

Diagonal functor, 14
Diagram, 3, 31
Direct limit, 44
Directed limit, 44
Discrete category, 10
Domain, 1
Domain of variation,
9

Element, 8, 57
Elementary topos, 67

72

Epic, 6
Equalizer, 31
Equalizing set, 32
Equivalence class, 9
Equivalent, 9, 23
Evaluation, 62
Exponential, 62
Exponential object,
62
Exponential
transpose,
62

Factors through, 1,
17

Faisceau, 29

Faithful, 13

Fiber coproduct, 34

Fiber coproduct
object, 34

Fiber product, 33

Fiber product object,
33

Final object, 8

Finite, 3

Forgetful functor, 15

Fork, 31

Free object, 8

Full, 13

Full subcategory, 11

Functor, 19

Functor category, 22

Functorial in, 12

Generalized element,
8

Generalized
truth-value
object, 65

Generic element, 9

Geometric
morphism,
68

Global element, 8



Grey arrow, 31
Grothendieck topos,
68

Has (finite) colimits,
42

Has (finite) limits, 41

Has binary products,
34

Has equalizers, 32

Has exponentials, 62

Has power objects,
63

Has pullbacks, 33

Hom-bifunctor, 25

Hom-class, 3

Hom-set, 2

Identity arrow, 1
Identity functor, 14
Identity law, 2
Inclusion functor, 15
Indexed, 22
Indexed by, 31
Indexing category,
31
Inductive limit, 44
Initial object, 8
Injection, 35
Interchange law, 20
Inverse, 7
Inverse limit, 44
Iso, 7
Isomorphic, 7, 23

Labelled, 22
Left adjoint, 45
Left exact, 41, 45
Left transpose, 48
Limit, 39
Limiting cone, 40
Linear order, 43
Local element, 9
Locally small, 2
Lowercase Greek
letter, 6

Lowercase Roman
letter, 5

Mate, 48
Monic, 6

N-fold coproducts,
37

N-fold products, 37

Natural equivalence,
22

Natural isomor-
phism, 22

Natural transforma-
tion, 18, 20

Naturality, 18, 21

Naturally in, 22

Naturally
isomorphic,
22

Null object, 8

Object, 1, 4
Opposite category,
11

Partial order, 42
Partially ordered, 42
Pasting diagram, 18
Poset, 42
Power object, 63
Power object functor,
66
Preorder, 42
Preserve, 13
Preserves (all)
colimits, 45
Preserves (all) limits,
45
Presheaf, 28
Product, 34
Product category, 11
Projection, 33, 34, 40
Projection functor, 64
Projective limit, 44
Pullback, 32

73

Pullback square, 33
Pushout, 34

Reflect, 13
Representables, 26
Representation, 26
Representing object,
26
Right adjoint, 45
Right exact, 42, 45
Right transpose, 48

Set-valued, 24

Shape, 8, 31

Shape E, 31

Shape P, 32

Shape T, 34

Small, 3

Snake identities, 51

Stage, 8

String diagram, 4

Subcategory, 11

Subobject, 9

Subobject classifier,
65

Template, 31

Terminal category, 10

Terminal object, 8

The category of
presheaves,
30

Topoi, 68

Topologically
plausible,
54

Topos, 67

Toposes, 68

Total order, 43

Transition arrow, 30

Transposition
diagram, 46

True arrow, 65

Unique functor, 14
Unit, 49



Universal arrow, 15
Universal cone, 40

Universal element,
57

Universal object, 8

Universal property,
16

Uppercase

calligraphic
letter, 5
Uppercase Roman
letter, 5
Uppercase script
letter, 6

Variable element, 9
Varying sets, 30

74

Vertex, 38
Weakly inverse, 47

Yoneda embedding
functor, 26
Yoneda functor, 26

Zig-zag identities, 51



	1 Category theory
	1.1 Categories
	1.2 Isomorphism
	1.3 Special objects and categories
	1.4 Functors
	1.5 Special functors
	1.6 Universal properties
	1.7 Natural transformation and functor category
	1.8 Representables
	1.9 Basic types of diagrams
	1.10 Limits
	1.11 Adjunctions
	1.12 Interactions
	1.13 Cartesian closed categories
	1.14 Subobject classifier

	2 Topos theory
	3 Appendix
	Alphabetical Index

