NOTE: This site has just upgraded to Forester 5.x and is still having some style and functionality issues, we will fix them ASAP.

definition. Spin group [lundholm2009clifford] [spin-000F]

We identify the following groups embedded in \(\mathcal {G}\) : \[ \begin {aligned} \mathcal {G}^{\times } &:=\{x \in \mathcal {G}: \exists y \in \mathcal {G}: x y=y x=1\} & \text { the group of all invertible elements } \\ \tilde {\Gamma } &:=\left \{x \in \mathcal {G}^{\times }: x^{\star } V x^{-1} \subseteq V\right \} & \text { the Lipschitz group } \\ \Gamma &:=\left \{v_1 v_2 \ldots v_k \in \mathcal {G}: v_i \in V^{\times }\right \} & \text { the versor group } \\ \text { Pin } &:=\left \{x \in \Gamma : x x^{\dagger } \in \{-1,1\}\right \} & \text { the group of unit versors } \\ \text { Spin } &:=\operatorname {Pin} \cap \mathcal {G}^{+} & \text { the group of even unit versors } \\ \operatorname {Spin}^{+} &:=\left \{x \in \operatorname {Spin}: x x^{\dagger }=1\right \} & \text { the rotor group } \\ \end {aligned} \] In the above, \(V^{\times }:=\left \{v \in V: v^2 \neq 0\right \}\) denotes the set of all invertible vectors.