NOTE: This site has just upgraded to Forester 5.x and is still having some style and functionality issues, we will fix them ASAP.

definition. Spin group [bar2011spin] [spin-000B]

We define the Pin \(\operatorname {group} \operatorname {Pin}(\boldsymbol {n})\) by \[ \operatorname {Pin}(n):=\left \{v_1 \cdot \ldots \cdot v_m \in \mathrm {Cl}_n \mid v_j \in S^{n-1} \subset \mathbb {R}^n, m \in \mathbb {N}_0\right \} \] We define the Spin group \(\operatorname {Spin}(\boldsymbol {n})\) by \[ \begin {aligned} \operatorname {Spin}(n) & :=\operatorname {Pin}(n) \cap \mathrm {Cl}_n^0 \\ & =\left \{v_1 \cdot \ldots \cdot v_m \in \mathrm {Cl}_n \mid v_j \in S^{n-1}, m \in 2 \mathbb {N}_0\right \} \end {aligned} \]