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1 Motivation

This survey is built on my notes in the process of figuring out Eric Wieser’s
MathOverflow question Definition of a spin group for our PR to Lean 4’s Mathlib
about Spin groups.

This is my first Forester experiment, also a spiritual successor to my writeup
The Many Faces of Geometric Algebra.

2 Our definition

Definition 2.0.1 (Clifford algebra [Miao et al.(2024)])
Let " be a module over a commutative ring ', equipped with a quadratic form
& : " → '.

A Clifford algebra over & is

Cℓ (&) ≡ )(")/�& (2.0.2)

where )(") is the tensor algebra of ", �& is the two-sided ideal generated from
the set

{< ⊗ < −&(<) | < ∈ "}. (2.0.3)

We denote the canonical linear map " → Cℓ (&) as �& .

Definition 2.0.4 (Lipschitz-Clifford group [Miao et al.(2024)])
The Lipschitz-Clifford group is defined as the subgroup closure of all the
invertible elements in the form of �&(<),
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Γ ≡ {G1 . . . G: ∈ Cℓ×(&) | G8 ∈ +} (2.0.5)

where

Cℓ×(&) ≡
{
G ∈ Cℓ (&) | ∃G−1 ∈ Cℓ (&), G−1G = GG−1 = 1

}
(2.0.6)

is the group of units (i.e. invertible elements) of Cℓ (&),

+ ≡
{
�&(<) ∈ Cℓ (&) | < ∈ "

}
(2.0.7)

is the subset + of Cℓ (&) in the form of �&(<).

Definition 2.0.8 (Pin group [Miao et al.(2024)])
The Pin group is defined as

Pin(&) ≡ Γ u U(Cℓ (&)) (2.0.9)

where u is the infimum (or greatest lower bound, or meet), and the infimum of
two submonoids is just their intersection ∩,

U(() ≡ {G ∈ ( | G∗ ∗ G = G ∗ G∗ = 1} (2.0.10)

are the unitary elements of the Clifford algebra as a ∗-monid, and we have defined
the star operation of Clifford algebra as Clifford conjugate [wieser2022formaliz-
ing], denoted Ḡ.

This definition is equivalent to the following:

Pin(&) ≡ {G ∈ Γ | N(G) = 1} (2.0.11)

where

N(G) ≡ GḠ. (2.0.12)
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Definition 2.0.13 (Spin group [Miao et al.(2024)])
The Spin group is defined as

Spin(&) ≡ Pin(&) u Cℓ+(&) (2.0.14)

where Cℓ+(&) is the even subalgebra of the Clifford algebra.

3 Appendix: Many faces of Spin group

Definitions coming from different sources are simply quoted here with minimal
modifications, to include immediate prerequisites, and omit some discussions
or theorems.

They are not classified, ordered, or pruned by similarity.

Definition 3.0.1 (Spin group [Lawson and Michelsohn(2016)])
Let+ be a vector space over the commutative field : and suppose @ is a quadratic
form on + .

We now consider the multiplicative group of units in the Clifford algebra�ℓ (+, @)
associated to + , which is defined to be the subset

�ℓ×(+, @) ≡
{
! ∈ �ℓ (+, @) : ∃!−1 with !−1! = !!−1 = 1

}
(3.0.2)

This group contains all elements E ∈ + with @(E) ≠ 0.

The group of units always acts naturally as automorphisms of the algebra. That
is, there is a homomorphism

Ad : Cℓ×(+, @) −→ Aut(Cℓ (+, @)) (3.0.3)

called the adjoint representation, which is given by

Ad!(G) ≡ ! × !−1 (3.0.4)

The Pin group of (+, @) is the subgroup Pin(+, @) of P(+, @) generated by the
elements E ∈ + with @(E) = ±1.

The associated Spin group of (+, @) is defined by

Spin(+, @) = Pin(+, @) ∩ �ℓ0(+, @). (3.0.5)
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Definition 3.0.6 (Spin group [Wikipedia(2024)])
The pin group Pin+ ( ) is the subgroup of the Lipschitz group Γ of elements
of spinor norm 1, and similarly the spin group Spin+ ( ) is the subgroup of
elements of Dickson invariant 0 in Pin+ ( ).

Definition 3.0.7 (Spin group [Li(2008)])
A versor refers to a Clifford monomial composed of invertible vectors. It is called
a rotor, or spinor, if the number of vectors is even. It is called a unit versor if its
magnitude is 1.

All versors in Cℒ (V =) form a group under the geometric product, called the
versor group, also known as the Clifford group, or Lipschitz group. All rotors
form a subgroup, called the rotor group. All unit versors form a subgroup,
called the pin group, and all unit rotors form a subgroup, called the spin group,
denoted by Spin (V =).

Definition 3.0.8 (Spin group [Sommer(2013)])
The Clifford group Γp,q of a Clifford algebra C?,@ is defined as

Γp,q :=
{
B ∈ C?,@ | ∀G ∈ R?,@ : BGB̂−1 ∈ R?,@

}
. (3.0.9)

From that definition we get immediately

Γp,q × R?,@ → R?,@ ; (B, G) ↦→ BGB̂−1 (3.0.10)

as the operation of the Clifford group Γp,q on R?,@ .

Γp,q is a multiple cover of the orthogonal group $(?, @). However, it is still
unnecessarily large. Therefore, we first reduce Γp,q to a two-fold cover of $(?, @)
by defining the so-called Pin group

Pin(p, q) :=
{
B ∈ Γp,q | B B̃ = ±1

}
. (3.0.11)

The even elements of Pin(?, @) form the spin group

Spin(p, q) := Pin(p, q) ∩ C+
?,@ (3.0.12)

which is a double cover of the special orthogonal group ($(?, @). Finally, those
elements of Spin(p, q) with Clifford norm equal 1 form a further subgroup

Spin+(p, q) := {B ∈ Spin(p, q) | B B̃ = 1} (3.0.13)

that covers SO+(?, @) twice. Thereby, SO+(?, @) is the connected component of
the identity of $(?, @).

4



Definition 3.0.14 (Spin group [Perwass et al.(2009)])
A versor is a multivector that can be expressed as the geometric product of a
number of non-null 1-vectors. That is, a versor \ can be written as \ =

∏:
8=1 n 8 ,

where {n1 , . . . , n:} ⊂ G∅1
?,@ with : ∈ N+, is a set of not necessarily linearly

independent vectors.

The subset of versors of G?,@ together with the geometric product, forms a group,
the Clifford group, denoted by G?,@ .

A versor \ ∈ G?,@ is called unitary if \−1 = \̃ , i.e. \\̃ = +1.

The set of unitary versors of G?,@ forms a subgroup P?,@ of the Clifford group
G?,@ , called the pin group.

A versor\ ∈ G?,@ is called a spinor if it is unitary (\\̃ = 1) and can be expressed
as the geometric product of an even number of 1-vectors. This implies that a
spinor is a linear combination of blades of even grade.

The set of spinors of G?,@ forms a subgroup of the pin group P?,@ , called the
spin group, which is denoted by S?,@ .

Definition 3.0.15 (Spin group [Jadczyk(2019)])
We define the Clifford group Γ = Γ(@) to be the group of all invertible elements
D ∈ Cl(@) which have the property that DHD−1 is in " whenever H is in ". We
define Γ(@)±as the intersection of Γ(@) and Cl(@)±.

For every element D ∈ Γ(@) we define the spinor norm #(D) by the formula

#(D) = �(D)D, (3.0.16)

where � is the main involution of the Clifford algebra Cl(@).

The following groups are called spin groups:

Pin(@) :=
{
B ∈ Γ(@)+ ∪ Γ(@)− : #(B) = ±1

}
Spin(@) :=

{
B ∈ Γ(@)+ : #(B) = ±1

}
Spin+(@) :=

{
B ∈ Γ(@)+ : #(B) = +1

}
.

(3.0.17)

Definition 3.0.18 (Spin group [Garling(2011)])
Suppose that (�, @) is a regular quadratic space. We consider the action ofG(�, @)
on A(�, @) by adjoint conjugation. We set

�3′6(0) = 606−1 , (3.0.19)

for 6 ∈ G(�, @) and 0 ∈ A(�, @).
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We restrict attention to those elements of G(�, @) which stabilize �. The Clifford
group Γ = Γ(�, @) is defined as{

6 ∈ G(�, @) : �3′6(G) ∈ � for G ∈ �
}
. (3.0.20)

If 6 ∈ Γ(�, @), we set (6)(G) = �3′6(G). Then (6) ∈ �!(�), and  is a
homomorphism of Γ into �!(�). is called the graded vector representation of
Γ.

It is customary to scale the elements of Γ(�, @); we set

Pin(�, @) = {6 ∈ Γ(�, @) : Δ(6) = ±1},
Γ1(�, @) = {6 ∈ Γ(�, @) : Δ(6) = 1}.

(3.0.21)

If (�, @) is a Euclidean space, then Pin(�, @) = Γ1(�, @); otherwise, Γ1(�, @) is a
subgroup of Pin(�, @) of index 2. We have a short exact sequence

1 −→ �2
⊆−→ Pin(�, @) −→ $(�, @) −→ 1; (3.0.22)

Pin(�, @) is a double cover of $(�, @).

In fact there is more interest in the subgroup Spin(�, @) of Pin(�, @) consisting of
products of an even number of unit vectors in �. Thus Spin(�, @) = Pin(�, @) ∩
A+(�, @) and

Spin(�, @) =
{
6 ∈ A+(�, @) : 6� = �6 and Δ(6) = ±1

}
. (3.0.23)

If G, H are unit vectors in� then (GH) = (G)(H) ∈ ($(�, @), so that (Spin(�, @)) ⊆
($(�, @). Conversely, every element of ($(�, @) is the product of an even num-
ber of simple reflections, and so ($(�, @) ⊆ 

(
Spin(�, @)

)
. Thus 

(
Spin(�, @)

)
=

($(�, @), and we have a short exact sequence.

1 −→ �2
⊆−→ Spin(�, @) −→ ($(�, @) −→ 1; (3.0.24)

Spin(�, @) is a double cover of ($(�, @).

Note also that if 0 ∈ Spin(�, @) and G ∈ � then (0)(G) = 0G0−1; conjugation and
adjoint conjugation by elements of Spin(�, @) are the same.

Definition 3.0.25 (Spin group [Meinrenken(2009)])
Recall that Π : Cl(+) → Cl(+), G ↦→ (−1)|G|G denotes the parity automorphism
of the Clifford algebra. Let Cl(+)×be the group of invertible elements in Cl(+).

The Clifford group Γ(+) is the subgroup of Cl(+)×, consisting of all G ∈ Cl(+)×
such that �G(E) := Π(G)EG−1 ∈ + for all E ∈ + ⊂ Cl(+).
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Hence, by definition the Clifford group comes with a natural representation,
Γ(+) → GL(+), G ↦→ �G . Let (Γ(+) = Γ(+) ∩ Cl0(+)×denote the special Clifford
group.

The canonical representation of the Clifford group takes values in O(+), and
defines an exact sequence,

1 −→ K× −→ Γ(+) −→ O(+) −→ 1. (3.0.26)

It restricts to a similar exact sequence for the special Clifford group,

1 −→ K× −→ (Γ(+) −→ SO(+) −→ 1. (3.0.27)

The elements of Γ(+) are all products G = E1 · · · E: where E1 , . . . , E: ∈ + are non-
isotropic. (Γ(+) consists of similar products, with : even. The corresponding
element �G is a product of reflections:

�E1···E: = 'E1 · · ·'E: . (3.0.28)

Suppose K = R. The Pin group Pin(+) is the preimage of {1,−1} under the
norm homomorphism # : Γ(+) → K×. Its intersection with (Γ(+) is called the
Spin group, and is denoted Spin(+).

Since #(�) = �2 for � ∈ K×, the only scalars in Pin(+) are ±1. Hence, the exact
sequence for the Clifford group restricts to an exact sequence,

1 −→ Z2 −→ Pin(+) −→ O(+) −→ 1, (3.0.29)

so that Pin(+) is a double cover of O(+). Similarly,

1 −→ Z2 −→ Spin(+) −→ SO(+) −→ 1, (3.0.30)

defines a double cover of SO(+). Elements in Pin(+) are products G = E1 · · · E:
with � (E8 , E8) = ±1. The group Spin(+) consists of similar products, with :

even.

Definition 3.0.31 (Spin group [Weber(2013)])
The ”group of units” in �;?,@ , denoted �;×?,@ , is the group of all invertible
elements.

An important subgroup of �;×(+, @) is the group %(+, @) generated by elements
E ∈ + with @(E) ≠ 0. Quotienting out by constants, we obtain the Pin group.
Specifically, Pin(+, @) (or Pin?,@ ) is the group generated by elements E ∈ + with
@(E) = ±1. Further define the spin groups to be

Spin(+, @) = Pin(+, @) ∩ �;0(+, @). (3.0.32)
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Definition 3.0.33 (Spin group [Bär(2018)])
We define the Pin group Pin(n) by

Pin(=) :=
{
E1 · . . . · E< ∈ Cl= | E 9 ∈ (=−1 ⊂ R= , < ∈ N0

}
(3.0.34)

We define the Spin group Spin(n) by

Spin(=) := Pin(=) ∩ Cl0=
=
{
E1 · . . . · E< ∈ Cl= | E 9 ∈ (=−1 , < ∈ 2N0

} (3.0.35)

Definition 3.0.36 (Spin group [Woit(2012)])
There are several equivalent possible ways to go about defining the Spin(=)
groups as groups of invertible elements in the Clifford algebra.

1. One can define Spin(=) in terms of invertible elements 6̃ of �even (=) that leave
the space + = R= invariant under conjugation

6̃+ 6̃−1 ⊂ + (3.0.37)

2. One can show that, for E, F ∈ + ,

E → E − 2 &(E, F)
&(F, F)F = −FEF/&(F, F) = FEF−1 (3.0.38)

is reflection in the hyperplane perpendicular to F. Then Pin(=) is defined as the
group generated by such reflections with ||F||2 = 1 . Spin(=) is the subgroup of
Pin(=) of even elements. Any rotation can be implemented as an even number
of reflections (Cartan-Dieudonné) theorem.

3. One can define the Lie algebra of Spin(=) in terms of quadratic elements of
the Clifford algebra.

Definition 3.0.39 (Spin group [Liu(2016)])
The space of quadratic vectors in Cl is the Lie algebra of SO(=). The correspond-
ing Lie group, called the Spin group Spin(&), is the set of invertible elements
G ∈ Cl that preserve + under E ↦→ GEG−1. Clearly this map is in SO(+, &) since
it preserves the quadratic form &, and is a two-fold cover with kernel ±1.

Definition 3.0.40 (Spin group [Figueroa-O’Farrill(2010)])
The Pin group Pin (+) of (+, &) is the subgroup of (the group of units of) �ℓ (+)
generated by E ∈ V with Q(E) = ±1. In other words, every element of Pin(V) is
of the form D1 · · · DA where D8 ∈ V and Q (D8) = ±1. We will write Pin(B, C) for
Pin

(
RB,C

)
and Pin(=) for Pin(=, 0).

The spin group of (+, &) is the intersection

Spin(+) = Pin(+) ∩ �ℓ (+)0. (3.0.41)
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Equivalently, it consists of elements D1 · · · D2? , where D8 ∈ V and Q (D8) = ±1.
We will write Spin(B, C) for Spin

(
RB,C

)
and Spin(=) for Spin(=, 0).

Definition 3.0.42 (Spin group [Lundholm and Svensson(2009)])
We identify the following groups embedded in G :

G× := {G ∈ G : ∃H ∈ G : GH = HG = 1} the group of all invertible elements
Γ̃ :=

{
G ∈ G× : G★+G−1 ⊆ +

}
the Lipschitz group

Γ := {E1E2 . . . E: ∈ G : E8 ∈ +×} the versor group

Pin :=
{
G ∈ Γ : GG† ∈ {−1, 1}

}
the group of unit versors

Spin := Pin∩G+ the group of even unit versors

Spin+ :=
{
G ∈ Spin : GG† = 1

}
the rotor group

(3.0.43)

In the above, +× :=
{
E ∈ + : E2 ≠ 0

}
denotes the set of all invertible vectors.

Definition 3.0.44 (Spin group [Renaud(2020)])
The Clifford group Γ(?, @) is the (multiplicative) group generated by invertible
1-vectors in '?,@ .

The Pin group Pin(?, @).

Pin(?, @) = {6 ∈ Γ(?, @) : 6 6̃ = ±1}. (3.0.45)

So if 6 ∈ Pin(?, @), 6̃ is a scalar multiple of 6−1. This is not true for arbitrary
elements of Γ(?, @).

The Spin group Spin(?, @). This is the subgroup of Pin(?, @) consisting of even
elements only, i.e.

Spin(?, @) = Pin(?, @) ∩ �;+(?, @). (3.0.46)

The Spin group Spin(?, @) has the further subgroup

Spin†(?, @) = {6 ∈ Spin(?, @) : 6 6̃ = +1}. (3.0.47)

Pin(?, @), Spin(?, @) and Spin†(?, @) are respectively the two-fold covering groups
of$(?, @), ($(?, @) and ($†(?, @) (where ($†(?, @) is the connected component
of ($(?, @) ).

Definition 3.0.48 (Spin group [Dutailly(2018)])
The Spin group Spin(�, �) of �;(�, �) is the subset of �;(�, �) whose elements
can be written as the product 6 = D1 · . . . · D2? of an even number of vectors of �
of norm 〈D: , D:〉 = 1.

9



As a consequence : 〈6, 6〉 = 1, 6C · 6 = 1 and Spin(�, �) ⊂ $(�;).

The scalars ±1 belong to the Spin group. The identity is +1. Spin(�, �) is a
connected Lie group.

Definition 3.0.49 (Spin group [Hitzer(2012)])
A versor refers to a Clifford monomial (product expression) composed of invert-
ible vectors. It is called a rotor, or spinor, if the number of vectors is even. It is
called a unit versor if its magnitude is 1.

Every versor � = 01 . . . 0A , 01 , . . . , 0A ∈ R2 , A ∈ N has an inverse

�−1 = 0−1
A . . . 0−1

1 = 0A . . . 01/
(
02

1 . . . 0
2
A

)
, (3.0.50)

such that
��−1 = �−1� = 1. (3.0.51)

This makes the set of all versors in �;(2, 0) a group, the so called Lipschitz
group with symbol Γ(2, 0), also called Clifford group or versor group. Versor
transformations apply via outermorphisms to all elements of a Clifford algebra.
It is the group of all reflections and rotations of R2.

The normalized subgroup of versors is called pin group

Pin(2, 0) = {� ∈ Γ(2, 0) | ��̃ = ±1}. (3.0.52)

In the case of �;(2, 0) we have

Pin(2, 0)
=
{
0 ∈ R2 | 02 = 1

}
∪
{
� | � = cos ! + 412 sin !, ! ∈ R

}
.

(3.0.53)

The pin group has an even subgroup, called spin group

Spin(2, 0) = Pin(2, 0) ∩ �;+(2, 0). (3.0.54)

The spin group has in general a spin plus subgroup

Spin+(2, 0) = {� ∈ Spin(2, 0) | ��̃ = +1}. (3.0.55)

Definition 3.0.56 (Spin group [Hahn(2004)])
We continue to let � be a field of characteristic not 2 and " a quadratic space
over �.

10



Recall that � : " → �(") is injective and that there is a unique involution - on
�(") taking �G to �G for all G. Consider " to be a subset of �(") via �, and
define the group Spin(") by

Spin(") =
{
2 ∈ �0(")× | 2"2−1 = ", 22̄ = 1�

}
, (3.0.57)

where �0(")×is the group of invertible elements of the ring�0("). The isome-
tries from " onto " constitute the orthogonal group $(") and ($(") is the
subgroup of elements of determinant 1. For 2 in Spin("), define

�2 : " → " (3.0.58)

by �2(G) = 2G2−1. This provides a homomorphism

� : Spin(") → ($("). (3.0.59)

By a theorem of Cartan and Dieudonné, any element � in $(") is a product � =

�H1 · · · �H: of hyperplane reflections �H8 . The assignmentΘ(�) = @
(
H1
)
· · · @

(
H:
)
(�×)2

defines the spinor norm homomorphism

Θ : ($(") → �×/(�×)2 . (3.0.60)

Definition 3.0.61 (Spin group [Porteous(1995)])
Let 6 be an invertible element of a universal Clifford algebra � such that, for
each G ∈ -, 6G 6̂−1 ∈ -. Then the map

�-,6 : G ↦→ 6G 6̂−1 (3.0.62)

is an orthogonal automorphism of -.

The element 6 will be said to induce or represent the orthogonal transformation
�-,6 and the set of all such elements 6 will be denoted by Γ(-) or simply by Γ.

The subset Γ is a subgroup of �.

The group Γ is called the Clifford group (or Lipschitz group) for - in the Clifford
algebra �. Since the universal algebra � is uniquely defined up to isomorphism,
Γ is also uniquely defined up to isomorphism.

An element 6 of Γ(-) represents a rotation of - if and only if 6 is the product
of an even number of elements of -. The set of such elements will be denoted
by Γ0 = Γ0(-). An element 6 of Γ represents an anti-rotation of - if and only if
6 is the product of an odd number of elements of -. The set of such elements
will be denoted by Γ1 = Γ1(-). Clearly, Γ0 = Γ ∩ �0 is a subgroup of Γ, while
Γ1 = Γ ∩ �1.
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The Clifford group Γ(-) of a quadratic space - is larger than is necessary if our
interest is in representing orthogonal transformations of -. Use of a quadratic
norm # on the Clifford algebra � leads to the definition of subgroups of Γ that
are less redundant for this purpose. This quadratic norm # : �→ � is defined
by the formula

#(0) = 0−0, for any 0 ∈ �, (3.0.63)

For - and Γ = Γ(-) as above we now define

Pin- = {6 ∈ Γ : |#(6)| = 1} and Spin- =
{
6 ∈ Γ0 : |#(6)| = 1

}
. (3.0.64)

Definition 3.0.65 (Spin group [Rosén(2019)])
Let+ be an inner product space. We denote by Δ+ the standard Clifford algebra
(∧+,+,Δ) defined by the Clifford product Δ on the space of multivectors in + .

Let + be an inner product space. The Clifford cone of + is the multiplicative
group 4̂+ ⊂ 4+ generated by nonsingular vectors, that is, vectors E such that
〈E〉2 ≠ 0. More precisely, @ ∈ 4̂+ if there are finitely many nonsingular vectors
E1 , . . . , E: ∈ + such that

@ = E1Δ · · ·ΔE: . (3.0.66)

Let F ∈ 4+ . Then F ∈ 4̂+ if and only if F is invertible and F̂EF−1 ∈ + for all
E ∈ + .

In this case F can be written as a product of at most dim+ nonsingular vectors,
and F̄F = FF̄ ∈ R\{0}.

Let + be an inner product space. Define the orthogonal, special orthogonal, pin,
and spin groups

O(+) := { isometries ) : + → +} ⊂ ℒ(+),
SO(+) := {) ∈ O(+); det) = +1} ⊂ ℒ(+),
Pin(+) :=

{
@ ∈ 4̂+; 〈@〉2 = ±1

}
⊂ 4+,

Spin(+) :=
{
@ ∈ Pin(+); @ ∈ 4ev+

}
⊂ 4ev+.

(3.0.67)

We call ) ∈ SO(+) a rotation and we call @ ∈ Spin(+) a rotor.

Definition 3.0.68 (Spin group [Ruhe et al.(2024)])
Motivation E. 39 (The problem of generalizing the definition of the Spin group).
For a positive definite quadratic form q on the real vector space + = R= with
= ≥ 3 the Spin group Spin(=) is defined via the kernel of the Spinor norm
(=extended quadratic form on Cl(+, q) ) restricted to the special Clifford group
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Γ[0](+, q) :

Spin(=) := ker
(
q : Γ[0](+, q) → R×

)
=
{
F ∈ Γ[0](+, q) | q(F) = 1

}
= q|−1

Γ[0](+,q) (1).
(3.0.69)

Spin(=) is thus a normal subgroup of the special Clifford group Γ[0](+, q), and, as
it turns out, a double cover of the special orthogonal group SO(=) via the twisted
conjugation �. The latter can be summarized by the short exact sequence:

1 −→ {±1} incl−−−→ Spin(=)
�
−→ SO(=) −→ 1. (3.0.70)

We intend to generalize this in several directions: 1. from Spin to Pin group,
2. from R= to vector spaces + over general fields F with ch(F) ≠ 2, 3. from
non-degenerate to degenerate quadratic forms q, 4. from positive (semi-)definite
to non-definite quadratic forms q. This comes with several challenges and
ambiguities.

Definition E. 40 (The real Pin group and the real Spin group). Let + be a finite
dimensional R-vector space +, dim+ = = < ∞, and q0 (possibly degenerate)
quadratic form on+ . We define the (real) Pin group and (real) Spin group, resp.,
of (+, q) as the following subquotients of the Clifford group. Γ(+, q) and its even
parity part Γ[0](+, q), resp.:

Pin(+, q) := {G ∈ Γ(+, q) | q(G) ∈ {±1}}/
[∗]∧

(ℛ)

Spin∞(+, q) :=
{
G ∈ Γ[0](+, q) | q(G) ∈ {±1}

}
/

[∗]∧
(ℛ)

(3.0.71)

Corollary E.41. Let (+, q) be a finite dimensional quadratic vector space over R.
Then the twisted conjugation induces a well-defined and surjective group ho-
momorphism onto the group of radical preserving orthogonal automorphisms
of (+, q) :

� : Pin(+, q) → Oℛ(+, q), (3.0.72)

with kernel:
ker

(
� : Pin

∼ in
(+, q) → Oℛ(+, q)

)
= {±1}. (3.0.73)

Correspondingly, for the Spin(+, q) group. In short, we have short exact se-
quences:

1 −→ {±1} incl−−−→ Pin(+, q)
�
−→ Oℛ(+, q) −→ 1,

1 −→ {±1} incl−−−→ Spin(+, q)
�
−→ SOℛ(+, q) −→ 1.

(3.0.74)

Definition 3.0.75 (Spin group [Gallier(2014)])
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Every Clifford algebra Cl(Φ)possesses a canonical anti-automorphism C : Cl(Φ) →
Cl(Φ) satisfying the properties

C(GH) = C(H)C(G), C ◦ C = id, and C(8(E)) = 8(E), (3.0.76)

for all G, H ∈ Cl(Φ) and all E ∈ + . Furthermore, such an anti-automorphism is
unique.

Every Clifford algebra Cl(Φ) has a unique canonical automorphism  : Cl(Φ) →
Cl(Φ) satisfying the properties

 ◦  = id, and (8(E)) = −8(E), (3.0.77)

for all E ∈ + .

First, we define conjugation on a Clifford algebra Cl(Φ) as the map

G ↦→ Ḡ = C((G)) for all G ∈ Cl(Φ). (3.0.78)

Given a finite dimensional vector space + and a quadratic form Φ on + , the
Clifford group of Φ is the group

Γ(Φ) =
{
G ∈ Cl(Φ)∗ | (G)EG−1 ∈ + for all E ∈ +

}
. (3.0.79)

The map # : Cl(&) → Cl(&) given by

#(G) = GḠ (3.0.80)

is called the norm of Cl(Φ).

We also define the group Γ+(Φ), called the special Clifford group, by

Γ+(Φ) = Γ(Φ) ∩ Cl0(Φ). (3.0.81)

We define the pinor group Pin(?, @) as the group

Pin(?, @) =
{
G ∈ Γ?,@ | #(G) = ±1

}
, (3.0.82)

and the spinor group Spin(?, @) as Pin(?, @) ∩ Γ+?,@ .

The restriction of � : Γ?,@ → GL(=) to the pinor group Pin(?, @) is a surjective
homomorphism � : Pin(?, @) → O(?, @) whose kernel is {−1, 1}, and the
restriction of � to the spinor group Spin(?, @) is a surjective homomorphism
� : Spin(?, @) → SO(?, @) whose kernel is {−1, 1}.

Remark: According to Atiyah, Bott and Shapiro, the use of the name Pin(:) is
a joke due to Jean-Pierre Serre (Atiyah, Bott and Shapiro [Atiyah et al.(1964)],
page 1).
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Definition 3.0.83 (Spin group [Fulton and Harris(2013)])
Instead of defining the spin group as the set of products of certain elements of
+ , it will be convenient to start with a more abstract definition. Set

Spin(&) = {G ∈ �(&)even : G · G∗ = 1 and G ·+ · G∗ ⊂ +} . (3.0.84)

We see from this definition that Spin(&) forms a closed subgroup of the group
of units in the (even) Clifford algebra. Any G in Spin(&) determines an endo-
morphism �(G) of + by

�(G)(E) = G · E · G∗ , E ∈ +. (3.0.85)

Define a larger subgroup, this time of the multiplicative group of �(&), by

Pin(&) = {G ∈ �(&) : G · G∗ = 1 and G ·+ · G∗ ⊂ +} , (3.0.86)

and define a homomorphism

� : Pin(&) → O(&), �(G)(E) = (G) · E · G∗ , (3.0.87)

where  : �($) → �($) is the main involution.

Definition 3.0.88 (Spin group [Wikipedia(2023)])
The pin group Pin(+) is a subgroup of Cl(+) ’s Clifford group of all elements of
the form

E1E2 · · · E: (3.0.89)
where each E8 ∈ + is of unit length: @ (E8) = 1.

The spin group is then defined as

Spin(+) = Pin(+) ∩ Cleven , (3.0.90)

where Cleven = Cl0 ⊕ Cl2 ⊕ Cl4 ⊕ · · · is the subspace generated by elements that
are the product of an even number of vectors. That is, Spin(+) consists of all
elements of Pin(+), given above, with the restriction to : being an even number.
The restriction to the even subspace is key to the formation of two-component
(Weyl) spinors, constructed below.

Definition 3.0.91 (Spin group [nLab(2023)])
The Pin group Pin(+; @) of a quadratic vector space, is the subgroup of the group
of units in the Clifford algebra Cl(+, @)

Pin(+, @) ↩→ GL1(Cl(+, @)) (3.0.92)

on those elements which are multiples E1 · · · E= of elements E8 ∈ + with @ (E8) =
1.

The Spin group Spin(+, @) is the further subgroup of Pin(+; @) on those elements
which are even number multiples E1 · · · E2: of elements E8 ∈ + with @ (E8) = 1.
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Definition 3.0.93 (Spin group [Dereli et al.(2010)])
The group Spin(?, @) is defined by

Spin(?, @) =
E1 . . . E< ∈ Cℓ?,@ | < ∈ 2Z+ , E8 =

?+@∑
9=1

08 9 4 9 , 〈E8 , E8〉 = ∓1, 1 ≤ 8 ≤ <


(3.0.94)

Definition 3.0.95 (Degenerate Spin group [Dereli et al.(2010)])
The subset of Cℓ?,@,A defined by

(?,@,A =

{
B�1 . . . �?+@(1 + �) | B ∈ Spin(?, @), �8 = 1 + 48

A∑
;=1

28; 5; , � ∈ Λ( 5 )
}

(3.0.96)
is a group under the Clifford multiplication where 〈·, ·〉 is a symmetric bilinear
form on R?+@+A ,

{
41 , . . . , 4? , 4?+1 , . . . , 4?+@ , 51 , . . . , 5A

}
is the algebra basis for the

degenerate Clifford algebra Cℓ?,@,A = Cℓ (R= , 〈〉), 1 ≤ 8 ≤ ? + @, 28; ∈ R, and Λ( 5 )
is defined by

Λ( 5 ) = Span
{
5:1 . . . 5: 9 | 1 ≤ :1 < :2 < . . . < : 9 ≤ A

}
. (3.0.97)
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