definition. Bilinear form [ca-0003]
definition. Bilinear form [ca-0003]
Let \(R\) be a ring, \(M\) an \(R\)-module.
An bilinear form \(B\) over \(M\) is a map \(B : M \to M \to R\), satisfying:
- \( B(x + y, z) = B(x, z) +B(y, z) \)
- \( B(x, y + z) = B(x, y) +B(x, z) \)
- \( B(a \bullet x, y) = a * B(x, y)\)
- \( B(x, a \bullet y) = a * B(x, y)\)