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1 Preliminaries

This section introduces the algebraic environment of Clifford Algebra, covering
vector spaces, groups, algebras, representations, modules, multilinear algebras,
quadratic forms, filtrations and graded algebras.

The material in this section should be familiar to the readers, but it is worth
reading through it to become familiar with the notation and terminology that
is used, as well as their counterparts in Lean, which usually require some
additional treatment, both mathematically and technically (probably applicable
to other formal proof verification systems).

Details can be found in the references in corresponding section, or you may use
the L N button to check the corresponding Mathlib document and Lean 4 source

code.

In this section, we follow [Jadczyk(2019)], with supplements from [Garling(2011)][Chen(2016)],
and extensive modifications to match the counterparts in Lean’s Mathlib.

1.1 Basics: from groups to modules

Convention 1.1.1 (Definition style)

In this document, we unify the informal mathematical language for a definition
to:

Let X be a concept X.
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A concept Zis a set/pair/triple/tuple (Z, op, ...), satisfying;:

1. Zis a concept Y over X under op .
2. formula for all elements in Z ( property ).

3. for each element in concept X, there exists element such that formula
for all elements in concept Z.

4. opiscalled op name, for all elements in Z, we have

(a) formula

(b) formula

(property ).

By default, X is a set, op is a binary operation on X.

Definition 1.1.2 (Group [Garling(2011), 1.1])
A group is a pair (G, #), satisfying:

1. (a*b)*c=ax(b=xc)foralla,b,c € G (associativity).
2. there exists 1 € G such that
lxa=ax*1=a (1.1.3)
foralla € G.
3. for each a € G, there exists a~! € G such that

axal=atl+a=1 (1.1.4)



Remark 1.1.5

It then follows that 1, the identity element, is unique, and that for each
¢ € G the inverse ¢! is unique.

A group G is abelian, or commutative, if g+ h = h=+ g forall g,h € G.

Notation 1.1.6 (Product)

In literatures, the binary operation of a group is usually called a product. It’s
denoted by juxtaposition ¢/, and is understood to be a mapping (g, h) — g+ h
from G X G to G.

Here we use an explicit symbol for the operation. It can be denoted multiplica-
tively as * in Group or additively as + in AddGroup, where the identity element
will be denoted by 1 or 0, respectively.

Sometimes we use notations with subscripts (e.g. *g, 1) to indicate where they
are.

Mathlib encodes the mapping G X G — G as G — G — G, it is understood to
be G — (G — G), that sends g € G to a mapping thatsends h € Gto g+ h € G.

Furthermore, a mathematical construct, e.g. a group, is represented by a “type”,
as Lean has a dependent type theory foundation, see [Carneiro(2019)] and
[Ullrich(2023), sec. 3.2].

Definition 1.1.7 (Monoid)

A monoid is a pair (R, #), satisfying:

1. (a*b)*c=ax(b+c)foralla,b,c € R (associativity).
2. there existsan element1 € Rsuchthatl*a=ax*1=aforalla € R

i.e. 11is the multiplicative identity (neutral element).

Definition 1.1.8 (Ring [Jadczyk(2019), 1.1])
A ring is a triple (R, +, #), satisfying:

1. Ris a commutative group under +.
2. Ris a monoid under .

3. foralla,b,c € R, we have

@ ax(b+c)=axb+a=xc
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(b) (a+b)rc=axc+bxc

(left and right distributivity over +).

Remark 1.1.9

In applications to Clifford algebras R will be always assumed to be com-
mutative.

Definition 1.1.10 (Division ring)

A division ring is a ring (R, +, *), satisfying:

1. R contains at least 2 elements.

2. forall a # 0in R, there exists a multiplicative inverse 2~ € R such that

asat=altsa=1 (1.1.11)

Definition 1.1.12 (Module [Jadczyk(2019), 1.3])

Let R be a commutative ring. A module over R, called an R-module, is a pair
(M, o), satisfying:

1. Mis a group under +.

2. ¢ : R - M — M is called scalar multiplication, for every a,b € R,
X,y € M, we have
(@ ae(x+y)=aex+bey
(b) (a+b)ex=aex+bex
(c) ax(bex)=(axb)ex
(d) lgex=x

Remark 1.1.13

The notation of scalar multiplication is generalized as heterogeneous scalar
multiplication HMul in Mathlib:

o:a—>f—>y (1.1.14)

where ¢, 8, v are different types.
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I
Definition 1.1.15 (Vector space [Jadczyk(2019), 1.5])

If R is a division ring, then a module M over R is called a vector space.

Remark 1.1.16

For generality, Mathlib uses Module throughout for vector spaces, particu-
larly, for a vector space V, it’s usually declared as

Let $K$ be a division ring, a module $V$ over $K$ is a vector
space
where being a module requires $V$ to be a commutative group
over $+$.

-/

variable [DivisionRing K] [AddCommGroup V] [Module K V]

For definitions/theorems about it, and most of them can be found under
Mathlib.LinearAlgebra e.g. LinearIndependent.

Definition 1.1.17 (Submodule)

A submodule N of M is a module N such that every element of N is also an
element of M.

If M is a vector space then N is called a subspace.

Definition 1.1.18 (Dual module)

The dual module M* : M —rj R is the R-module of all linear maps from M to
R.

1.2 Algebras

Definition 1.2.1 (Ring homomorphism [Chen(2016), 4.5.1])
Let (a, +a,*a) and (B, +p, *p) be rings.

A ring homomorphism from a to f isamap I : @ —,. p such that
1. I(x +q y) = 1(x) +5 1(y) foreach x,y € a.

2. 1(x*qy) =1(x)#p 1(y) foreach x,y € a.
3. 1(1a) = 1.
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Definition 1.2.2 (Isomorphism, endomorphism, automorphism)

Isomorphism A = B is a bijective homomorphism ¢ : A — B (it follows that
¢~!: B — Aisalso a homomorphism).

Endomorphism is a homomorphism from an object to itself, denoted End(A).

Automorphism is an endomorphism which is also an isomorphism, denoted
Aut(A).

Definition 1.2.3 (Algebra)
Let R be a commutative ring. An algebra A over R is a pair (4, ), satisfying:

1. Ais aring under *.

2. there exists a ring homomorphism from R to A, denoted 1 : R —,. A.
3. ¢: R - M — M is a scalar multiplication

4. foreveryr € R, x € A, we have

(a) r*x = x *r (commutativity between R and A)

(b) r ® x = r + x (definition of scalar multiplication)

where we omitted that the ring homomorphism 1 is applied to r before
each multiplication.

Notation 1.2.4

Following literatures, for r € R, usually we write 14(r) : R —,. A as a product
r 14 if not omitted, while they are written as a call to algebraMap _ _ rin Mathlib,
which is defined to be Algebra.toRingHom r.

Remark 1.2.5

The definition above (adopted in Mathlib) is more general than the definition
in literature (e.g. [Jadczyk(2019), 1.6]):

Let R be a commutative ring. An algebra A over R is a pair (M, #), satisfying:

1. A is amodule M over R under + and e.
2. Ais aring under *.

3. Forx,y € A,a € R, we have

ae(x+ry)=(aex)+y=x=*(aey) (1.2.6)



See Implementation notes in Algebra for details.

Remark 1.2.7

What'’s simply called algebra is actually associative algebra with identity,
a.k.a. associative unital algebra. See the red herring principle for more
about such phenomenon for naming, particularly the example of (possibly)
nonassociative algebra.

Definition 1.2.8 (Algebra homomorphism)

Let A and B be R-algebras. 14 and Ip are ring homomorphisms from R to A
and B, respectively.

A algebra homomorphism from A to Bisamap f : @ —, § such that

1. f is a ring homomorphism

2. f(1a(r)) = 1p(r) foreach r € R

Definition 1.2.9 (Ring quotient)

Let R be a non-commutative ring, r an arbitrary equivalence relation on R. The
ring quotient of R by r is the quotient of R by the strengthen equivalence relation
of r such that for all a4, b, ¢ in R:

l.a+c~b+cifa~b
2.axc~bxcifa~b

3.ax*b~axcifb~c

i.e. the equivalence relation is compatible with the ring operations + and *.


https://leanprover-community.github.io/mathlib4_docs/find/#docs/Algebra
https://ncatlab.org/nlab/show/red%20herring%20principle

Remark 1.2.10

As ideals haven’t been formalized for the non-commutative case, Mathlib
uses RingQuot in places where the quotient of non-commutative rings by
ideal is needed.

The universal properties of the quotient are proven, and should be used
instead of the definition that is subject to change.

Definition 1.2.11 (Free algebra)

Let X be an arbitrary set. An free R-algebra on X (or “generated by X”), named
A, is the ring quotient of the following inductively constructed set Ay

1. for all x in X, there exists a map X — Apre.
2. for all 7 in R, there exists a map R — Ap..
3. foralla,bin Ape, a +bisin Apr.

4. foralla,bin Apre, a * b isin Agre.

by that equivalence relation that makes A an R-algebra, namely:

1. there exists a ring homomorphism from R to Ay, denoted R — . Apre.
2. Ais a commutative group under +.

. A is a monoid under *.

B~ W

. left and right distributivity under * over +.

Q1

.0*a~ax0~0.
6. foralla,b,cin A, if a ~ b, we have

(@ a+c~b+c
(b) c+a~c+b
() axc~b=xc

(d) cxa~c=b

(compatibility with the ring operations + and *)


https://leanprover-community.github.io/mathlib4_docs/find/#docs/RingQuot

Remark 1.2.12

Similar to Remark 1.2.7, what we defined here is the free (associative,
unital) R-algebra on X, it can be denoted R(X), expressing that it’s freely
generated by R and X, where X is the set of generators.

Definition 1.2.13 (Linear map)

Let R, S be rings, M an R-module, N an S-module. A linear map from M to N
is a function f : M —; N over a ring homomorphism o : R —.. S, satisfying:

1. fix+y)=f(x)+ f(y)forallx,y € M.
2. f(rex)=o(r)e f(x)forallr € R, x € M.

Remark 1.2.14 (Lin)

The set of all linear maps from M to M’ is denoted Lin(M, M’), and Lin(M)
for mapping from M to itself.

Lin(M) is an endomorphism.

Definition 1.2.15 (Tensor algebra)
Let A be a free R-algebra generated by module M, let : : M — A denote the
map from M to A.

An tensor algebra over M (or "of M”) T is the ring quotient of the free R-algebra

generated by M, by the equivalence relation satisfying:

1. foralla,bin M, t(a + b) ~ (a) + (D).

2. forallrinR,ain M, ((r e a) ~ r = ((a).
i.e. making the inclusion of M into an R-linear map.

Remark 1.2.16

The definition above is equivalent to the following definition in literature
(e.g. [Jadczyk(2019), 1.7]):

Let M be a module over R. An algebra T is called a tensor algebra over M
(or "of M”) if it satisfies the following universal properties:




1. T is an algebra containing M as a submodule, and it is generated by
M,

2. Every linear mapping A of M into an algebra A over R, can be ex-
tended to a homomorphism 6 of T into A.

1.3 Forms

Definition 1.3.1 (Bilinear form)
Let R be a ring, M an R-module.

An bilinear form B over M isamap B : M — M — R, satisfying:

1. B(x +v,2) = B(x,z) + B(y, 2)
2. B(x,y +2z) = B(x,y) + B(x, 2)
3. B(aex,y)=axB(x,y)
4. B(x,aey)=a+B(x,y)

forallae R, x,y,z € M.

Definition 1.3.2 (Quadratic form [Jadczyk(2019), 1.9])

Let R be a commutative ring, M a R-module.
An quadratic form Q over M isamap Q : M — R, satisfying:
1. Qaex)=a+a=Q(x)foralla € R,x € M.
2. there exists a companion bilinear form B : M — M — R, such that

Qx+y) =Q(x) +Q(y) + B(x,y)

In [Jadczyk(2019)], the bilinear form is denoted @, and called the polar form
associated with the quadratic form Q, or simply the polar form of Q.
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Remark 1.3.3

This notion generalizes to commutative semirings using the approach in
[[zhakian et al.(2016)].

2 Clifford Algebra

Here we provide a detailed account of the formalization of Clifford Algebra
[Hestenes and Sobczyk(1984)] in the Lean 4 theorem prover and programming
language [Moura and Ullrich(2021)][de Moura et al.(2015)][Ullrich(2023)] and
using its Mathematical Library Mathlib [The mathlib Community(2020)].

The primary references of the formalization are [Wieser and Song(2022)] and

[Wieser(2024)]. This section and the previous section are adapted from our
[Wieser and Song(2024)].

2.1 Definition

Definition 2.1.1 (Clifford algebra [Wieser and Song(2022)])

Let M be a module over a commutative ring R, equipped with a quadratic form
Q:M—R.

Let 1 : M —g) T(M) be the canonical R-linear map for the tensor algebra T(M).

Let 1 : R —,. T(M) be the canonical map from R to T(M), as a ring homomor-
phism.

A Clifford algebra over Q, denoted Cl(Q), is the ring quotient of the tensor
algebra T(M) by the equivalence relation satisfying t(m)* ~ 1(Q(m)) for all
m € M.

The natural quotient map is denoted 7 : T(M) — Cf(Q) in some literatures, or
Tt/ T1Q to emphasize the bilinear form ® or the quadratic form Q, respectively.
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Remark 2.1.2

In literatures, M is often written V, and the quotient is taken by the two-
sided ideal I generated from the set {v®v—Q(v)|v € V'}. See also Clifford
algebra [pr-spin].

As of writing, Mathlib does not have direct support for two-sided ideals,
but it does support the equivalent operation of taking the ring quotient by
a suitable closure of a relation like v ® v ~ Q(v).

Hence the definition above.

Remark 2.1.3

This definition and what follows in Mathlib is initially presented in [Wieser and Song(2022)],
some further developments are based on [Grinberg(2016)], and in turn

based on [Bourbaki(2007)] which is in French and never translated to

English.

The most informative English reference on [Bourbaki(2007)] is [Jadczyk(2019)],
which has an updated exposition in [Jadczyk(2023)].

Example 2.1.4 (Clifford algebra over a vector space)

Let V be a vector space R" over R, equipped with a quadratic form Q.

Since R is a commutative ring and V is a module, the definition above
applies.

Definition 2.1.5 (Clifford map [Wieser and Song(2022)])

We denote the canonical R-linear map to the Clifford algebra C{(M) by ¢ :
M _>Z[R] CE(M).

It’s denoted ig or just i in some literatures.

Definition 2.1.6 (Clifford lift [Wieser and Song(2022)])

Given a linear map f : M —[g] A into an R-algebra A, satisfying f(m)* = Q(m)
for all m € M, called is Clifford, the canonical lift of f is defined to be a algebra
homomorphism from C¢/(Q) to A, denoted lift f : C{(Q) —, A.

12
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Theorem 2.1.7 (Universal property [Wieser and Song(2022)])

Given f : M —yg; A, which is Clifford, F = lift f (denoted f in some
literatures), we have:

1. Fo = f,ie. the following diagram commutes:

P=lift f
aQER) —— A

|

1%

2. lift is unique, i.e. given G : C{(Q) —, A, we have:

Goi=f & G=liftf (2.1.8)

Remark 2.1.9

The universal property of the Clifford algebras is now proven, and should
be used instead of the definition that is subject to change.

Definition 2.1.10 (Exterior algebra [Wieser and Song(2022)])

An Exterior algebra over M is the Clifford algebra C/(Q) where Q(m) = 0 for all
m € M.

2.2 Operations

Convention 2.2.1 ( [Wieser and Song(2022)])

Same as the previous section, let M be a module over a commutative ring R,
equipped with a quadratic form Q : M — R.

We also use m or my,ms, ... to denote elements of M, i.e. vectors, and x, y, z to
denote elements of Cl(Q).

Definition 2.2.2 (Grade involution [Wieser and Song(2022)])

Grade involution, intuitively, is negating each basis vector.

Formally, it’s an algebra homomorphism « : C/(Q) —, C/(Q), satisfying:
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1. aoca=id
2. a(i(m)) = —i(m)
forallm e M.

That is, the following diagram commutes:

Q) —2— Q)

-

1%

It’s called main involution a or main automorphism in [Jadczyk(2019)], the
canonical automorphism in [Gallier(2008)].

It’s denoted 171 in [Lounesto(2001)], a(m) in [Jadczyk(2019)], m* in [Chisolm(2012)].

Definition 2.2.3 (Grade reversion [Wieser and Song(2022)])

Grade reversion, intuitively, is reversing the multiplication order of basis vectors.
Formally, it’s an algebra homomorphism 7 : C/(Q) —, Cl(Q)°P, satisfying:
1. t(myima) = T(ma)t(my)

2. totrt=1id

3. 1(1(m)) = t(m)

That is, the following diagram commutes:

ClQ) ——— CUQ)®

LT L

v

It’s called anti-involution 7 in [Jadczyk(2019)], the canonical anti-automorphism
in [Gallier(2008)], also called transpose/transposition in some literature, fol-
lowing tensor algebra or matrix.

It's denoted 7 in [Lounesto(2001)], m® in [Jadczyk(2019)] (with variants like m'
or m" in other literatures), m* in [Chisolm(2012)].
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Definition 2.2.4 (Clifford conjugate [Wieser and Song(2022)])

Clifford conjugate is an algebra homomorphism = : C{/(Q) —, Cl(Q), denoted
x* (or even x', x? in some literatures), defined to be:

x* = reverse(involute(x)) = t(a(x)) (2.2.5)

for all x € C¢(Q), satisfying (as a *-ring):

L (x+y)=@)+y)
2. (xy) = (y) (%)
3. xo0x=1id

4. 1" =

and (as a *-algebra):

(rx) =r'x" (2.2.6)

forall ¥ € R, x,y € C¢(Q) where ’ is the involution of the commutative *-ring R.

Note: In our current formalization in Mathlib, the application of the involution
on r is ignored, as there appears to be nothing in the literature that advocates
doing this.

Clifford conjugate is denoted 7 in [Lounesto(2001)] and most literatures, m* in
[Chisolm(2012)].
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